Branch and Bound

Algorithms for Nearest Neighbor Search: Lecture 1

Yury Lifshits

http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

Welcome to Nearest Neighbors!

- Welcome to Nearest Neighbors!
- Branch and Bound Methodology

- Welcome to Nearest Neighbors!
- Branch and Bound Methodology
- Around Vantage-Point Trees

- Welcome to Nearest Neighbors!
- Branch and Bound Methodology
- Around Vantage-Point Trees
- Generalized Hyperplane Trees and Relatives

- Welcome to Nearest Neighbors!
- Branch and Bound Methodology
- Around Vantage-Point Trees
- Generalized Hyperplane Trees and Relatives
- M-Trees

Chapter I

Welcome to Nearest Neighbors!

Informal Statement

To preprocess a database of *n* objects so that given a query object, one can effectively determine its nearest neighbors in database

More Formally

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

More Formally

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

More Formally

Search space: object domain \mathbb{U} , similarity function σ

Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

Task: find $\operatorname{argmax}_{p_i} \sigma(p_i, q)$

Applications (1/5) Information Retrieval

- Content-based retrieval (magnetic resonance images, tomography, CAD shapes, time series, texts)
- Spelling correction
- Geographic databases (post-office problem)
- Searching for similar DNA sequences
- Related pages web search
- Semantic search, concept matching

Applications (2/5) Machine Learning

- kNN classification rule: classify by majority of k
 nearest training examples. E.g. recognition of faces,
 fingerprints, speaker identity, optical characters
- Nearest-neighbor interpolation

Applications (3/5) Data Mining

- Near-duplicate detection
- Plagiarism detection
- Computing co-occurrence similarity (for detecting synonyms, query extension, machine translation...)

Applications (3/5) Data Mining

- Near-duplicate detection
- Plagiarism detection
- Computing co-occurrence similarity (for detecting synonyms, query extension, machine translation...)

Key difference:

Mostly, off-line problems

Applications (4/5) Bipartite Problems

- Recommendation systems (most relevant movie to a set of already watched ones)
- Personalized news aggregation (most relevant news articles to a given user's profile of interests)
- Behavioral targeting (most relevant ad for displaying to a given user)

Applications (4/5) Bipartite Problems

- Recommendation systems (most relevant movie to a set of already watched ones)
- Personalized news aggregation (most relevant news articles to a given user's profile of interests)
- Behavioral targeting (most relevant ad for displaying to a given user)

Key differences:

Query and database objects have different nature Objects are described by features and connections

Applications (5/5) As a Subroutine

- Coding theory (maximum likelihood decoding)
- MPEG compression (searching for similar fragments in already compressed part)
- Clustering

Variations of the Computation Task

Solution aspects:

- Approximate nearest neighbors
- Dynamic nearest neighbors: moving objects, deletes/inserts, changing similarity function

Variations of the Computation Task

Solution aspects:

- Approximate nearest neighbors
- Dynamic nearest neighbors: moving objects, deletes/inserts, changing similarity function

Related problems:

- Nearest neighbor: nearest museum to my hotel
- Reverse nearest neighbor: all museums for which my hotel is the nearest one
- Range queries: all museums up to 2km from my hotel
- Closest pair: closest pair of museum and hotel
- Spatial join: pairs of hotels and museums which are at most 1km apart
- Multiple nearest neighbors: nearest museums for each of these hotels
- Metric facility location: how to build hotels to minimize the sum of "museum — nearest hotel" distances

1908 Voronoi diagram

1908 Voronoi diagram

1967 kNN classification rule by Cover and Hart

- 1908 Voronoi diagram
- 1967 kNN classification rule by Cover and Hart
- 1973 Post-office problem posed by Knuth

- 1908 Voronoi diagram
- 1967 kNN classification rule by Cover and Hart
- 1973 Post-office problem posed by Knuth
- 1997 The paper by Kleinberg, beginning of provable upper/lower bounds

- 1908 Voronoi diagram
- 1967 kNN classification rule by Cover and Hart
- 1973 Post-office problem posed by Knuth
- 1997 The paper by Kleinberg, beginning of provable upper/lower bounds
- 2006 Similarity Search book by Zezula, Amato, Dohnal and Batko

- 1908 Voronoi diagram
- 1967 kNN classification rule by Cover and Hart
- 1973 Post-office problem posed by Knuth
- 1997 The paper by Kleinberg, beginning of provable upper/lower bounds
- 2006 Similarity Search book by Zezula, Amato, Dohnal and Batko
- 2008 First International Workshop on Similarity Search. Consider submitting!

Four lectures:

 Branch-and-bound: various tree-based data structures for general metric space

Four lectures:

- Branch-and-bound: various tree-based data structures for general metric space
- Other use of triangle inequality: Walks, matrix methods, specific tricks for Euclidean space

Four lectures:

- Branch-and-bound: various tree-based data structures for general metric space
- Other use of triangle inequality: Walks, matrix methods, specific tricks for Euclidean space
- Mapping-based techniques: Locality-sensitive hashing, random projections

Four lectures:

- Branch-and-bound: various tree-based data structures for general metric space
- Other use of triangle inequality: Walks, matrix methods, specific tricks for Euclidean space
- Mapping-based techniques: Locality-sensitive hashing, random projections
- Restrictions on input: Intrinsic dimension, probabilistic analysis and open problems

Four lectures:

- Branch-and-bound: various tree-based data structures for general metric space
- Other use of triangle inequality: Walks, matrix methods, specific tricks for Euclidean space
- Mapping-based techniques: Locality-sensitive hashing, random projections
- Restrictions on input: Intrinsic dimension, probabilistic analysis and open problems

Not covered: low-dimensional solutions, experimental results, parallelization, I/O complexity, lower bounds, applications

Chapter II

Branch and Bound Methodology

General Metric Space

Tell me definition of metric space

General Metric Space

Tell me definition of metric space

```
M = (\mathbb{U}, d), distance function d satisfies:
```

```
Non negativity: \forall s,t \in \mathbb{U}: d(s,t) \geq 0
Symmetry: \forall s,t \in \mathbb{U}: d(s,t) = d(t,s)
Identity: d(s,t) = 0 \Rightarrow s = t
Triangle inequality: \forall r,s,t \in \mathbb{U}: d(r,t) \leq d(r,s) + d(s,t)
```

General Metric Space

Tell me definition of metric space

 $M = (\mathbb{U}, d)$, distance function d satisfies:

```
Non negativity: \forall s,t \in \mathbb{U}: d(s,t) \geq 0
Symmetry: \forall s,t \in \mathbb{U}: d(s,t) = d(t,s)
Identity: d(s,t) = 0 \Rightarrow s = t
Triangle inequality: \forall r,s,t \in \mathbb{U}: d(r,t) \leq d(r,s) + d(s,t)
```

Basic Examples:

- Arbitrary metric space, oracle access to distance function
- k-dimensional Euclidean space with Euclidean, weighted Euclidean, Manhattan or L_p metric
- Strings with Hamming or Levenshtein distance

Metric Spaces: More Examples

- Finite sets with Jaccard metric $d(A, B) = 1 \frac{|A \cap B|}{|A \cup B|}$
- Correlated dimensions: $\bar{x} \cdot M \cdot \bar{y}$ distance
- Hausdorff distance for sets

Metric Spaces: More Examples

- Finite sets with Jaccard metric $d(A, B) = 1 \frac{|A \cap B|}{|A \cup B|}$
- Correlated dimensions: $\bar{x} \cdot M \cdot \bar{y}$ distance
- Hausdorff distance for sets

Similarity spaces (no triangle inequality):

- Multidimensional vectors with scalar product similarity
- Bipartite graph, co-citations similarity for vertices in one part
- Social networks with "number of joint friends" similarity

Branch and Bound: Search Hierarchy

Database $S = \{p_1, \dots, p_n\}$ is represented by a tree:

- Every node corresponds to a subset of S
- Root corresponds to S itself
- Children's sets cover parent's set
- Every node contains a "description" of its subtree providing easy-computable lower bound for $d(q, \cdot)$ in the corresponding subset

Branch and Bound: Range Search

Task: find all i $d(p_i, q) \le r$:

- Make a depth-first traversal of search hierarchy
- At every node compute the lower bound for its subtree
- Prune branches with lower bounds above r

B&B: Nearest Neighbor Search

Task: find $\operatorname{argmin}_{p_i} d(p_i, q)$:

- ① Pick a random p_i , set $p_{NN} := p_i, r_{NN} := d(p_i, q)$
- Start range search with r_{NN} range
- Whenever meet p' such that $d(p',q) < r_{NN}$, update $p_{NN} := p', r_{NN} := d(p',q)$

B&B: Best Bin First

Task: find $\operatorname{argmin}_{p_i} d(p_i, q)$:

- ① Pick a random p_i , set $p_{NN} := p_i, r_{NN} := d(p_i, q)$
- Put the root node into inspection queue
- Every time: take the node with a smallest lower bound from inspection queue, compute lower bounds for children subtrees
- Insert children with lower bound below r_{NN} into inspection queue; prune other children branches
- Whenever meet p' such that $d(p',q) < r_{NN}$, update $p_{NN} := p', r_{NN} := d(p',q)$

Some Tree-Based Data Structures

k-d-B tree Sphere Rectangle Tree Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries Vantage-point tree tree R*-tree Burkhard-Keller tree BBD tree Voronoi tree Balanced aspect ratio tree Metric tree SS-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree Generalized hyperplane tree Spill Tree Fixed queries tree Hybrid tree Slim tree k-d tree Balltree Quadtree Octree SR-tree Post-office tree

Chapter III

Vantage-Point Trees and Relatives

Vantage-Point Partitioning

Uhlmann'91, Yianilos'93:

- ① Choose some object *p* in database (called pivot)
- Choose partitioning radius rp
- In Put all p_i such that $d(p_i, p) \le r$ into "inner" part, others to the "outer" part
- Recursively repeat

Vantage-Point Partitioning

Uhlmann'91, Yianilos'93:

- Choose some object p in database (called pivot)
- Choose partitioning radius rp
- **9** Put all p_i such that $d(p_i, p) \le r$ into "inner" part, others to the "outer" part

Pruning Conditions

For *r*-range search:

If $d(q, p) > r_p + r$ prune the inner branch If $d(q, p) < r_p - r$ prune the outer branch

For $r_p - r \le d(q, p) \le r_p + r$ we have to inspect both branches

Pruning Conditions

For *r*-range search:

If $d(q, p) > r_p + r$ prune the inner branch If $d(q, p) < r_p - r$ prune the outer branch

For $r_p - r \le d(q, p) \le r_p + r$ we have to inspect both branches

Pruning Conditions

For *r*-range search:

If $d(q, p) > r_p + r$ prune the inner branch If $d(q, p) < r_p - r$ prune the outer branch

For $r_p - r \le d(q, p) \le r_p + r$ we have to inspect both branches

Variations of Vantage-Point Trees

- Burkhard-Keller tree: pivot used to divide the space into *m* rings Burkhard&Keller'73
- MVP-tree: use the same pivot for different nodes in one level Bozkaya&Ozsoyoglu'97
- Post-office tree: use $r_p + \delta$ for inner branch, $r_p \delta$ for outer branch McNutt'72

Variations of Vantage-Point Trees

- Burkhard-Keller tree: pivot used to divide the space into *m* rings Burkhard&Keller'73
- MVP-tree: use the same pivot for different nodes in one level Bozkaya&Ozsoyoglu'97
- Post-office tree: use $r_p + \delta$ for inner branch, $r_p \delta$ for outer branch McNutt'72

Variations of Vantage-Point Trees

- Burkhard-Keller tree: pivot used to divide the space into *m* rings Burkhard&Keller'73
- MVP-tree: use the same pivot for different nodes in one level Bozkaya&Ozsoyoglu'97
- Post-office tree: use $r_p + \delta$ for inner branch, $r_p \delta$ for outer branch McNutt'72

Chapter IV

Generalized Hyperplane Trees and Relatives

Generalized Hyperplane Tree

Partitioning technique (Uhlmann'91):

- Pick two objects (called pivots) p_1 and p_2
- Put all objects that are closer to p_1 than to p_2 to the left branch, others to the right branch
- Recursively repeat

Generalized Hyperplane Tree

Partitioning technique (Uhlmann'91):

- Pick two objects (called pivots) p_1 and p_2
- Put all objects that are closer to p_1 than to p_2 to the left branch, others to the right branch
- Recursively repeat

Generalized Hyperplane Tree

Partitioning technique (Uhlmann'91):

- Pick two objects (called pivots) p_1 and p_2
- Put all objects that are closer to p_1 than to p_2 to the left branch, others to the right branch
- Recursively repeat

GH-Tree: Pruning Conditions

For *r*-range search:

If $d(q, p_1) > d(q, p_2) + 2r$ prune the left branch If $d(q, p_1) < d(q, p_2) - 2r$ prune the right branch

For $|d(q, p_1) - d(q, p_2)| \le 2r$ we have to inspect both branches

$$p_1$$
 p_2

GH-Tree: Pruning Conditions

For *r*-range search:

If $d(q, p_1) > d(q, p_2) + 2r$ prune the left branch If $d(q, p_1) < d(q, p_2) - 2r$ prune the right branch

For $|d(q, p_1) - d(q, p_2)| \le 2r$ we have to inspect both branches

Bisector trees

Let's keep the covering radius for p_1 and left branch, for p_2 and right branch: useful information for stronger pruning conditions

Bisector trees

Let's keep the covering radius for p_1 and left branch, for p_2 and right branch: useful information for stronger pruning conditions

Variation: monotonous bisector tree (Noltemeier, Verbarg, Zirkelbach'92) always uses parent pivot as one of two children pivots

Bisector trees

Let's keep the covering radius for p_1 and left branch, for p_2 and right branch: useful information for stronger pruning conditions

Variation: monotonous bisector tree (Noltemeier, Verbarg, Zirkelbach'92) always uses parent pivot as one of two children pivots

Exercise: prove that covering radii are monotonically decrease in mb-trees

Geometric Near-Neighbor Access Tree

Brin'95:

- Use *m* pivots
- Branch i consists of objects for which p_i is the closest pivot
- Stores minimal and maximal distances from pivots to all "brother"-branches

Chapter V

M-trees

M-tree: Data structure

Ciaccia, Patella, Zezula'97:

- All database objects are stored in leaf nodes (buckets of fixed size)
- Every internal nodes has associated pivot, covering radius and legal range for number of children (e.g. 2-3)
- Usual depth-first or best-first search

M-tree: Data structure

Ciaccia, Patella, Zezula'97:

- All database objects are stored in leaf nodes (buckets of fixed size)
- Every internal nodes has associated pivot, covering radius and legal range for number of children (e.g. 2-3)
- Usual depth-first or best-first search

Special algorithms for insertions and deletions a-la B-tree

All insertions happen at the leaf nodes:

Choose the leaf node using "minimal expansion of covering radius" principle

- Choose the leaf node using "minimal expansion of covering radius" principle
- If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii

- Choose the leaf node using "minimal expansion of covering radius" principle
- If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii
- Otherwise the leaf node is split into two nodes

- Choose the leaf node using "minimal expansion of covering radius" principle
- If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii
- Otherwise the leaf node is split into two nodes
 - Use two pivots generalized hyperplane partitioning

- Choose the leaf node using "minimal expansion of covering radius" principle
- If the leaf node contains fewer than the maximum legal number of elements, there is room for one more. Insert; update all covering radii
- Otherwise the leaf node is split into two nodes
 - Use two pivots generalized hyperplane partitioning
 - Obtained Both pivots are added to the node's parent, which may cause it to be split, and so on

Exercises

Prove that Jaccard distance $d(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$ satisfies triangle inequality

Exercises

Prove that Jaccard distance $d(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$ satisfies triangle inequality

Prove that covering radii are monotonically decrease in mb-trees

Exercises

Prove that Jaccard distance $d(A, B) = 1 - \frac{|A \cap B|}{|A \cup B|}$ satisfies triangle inequality

Prove that covering radii are monotonically decrease in mb-trees

Construct a database and a set of potential queries in some multidimensional Euclidean space for which all described data structures require $\Omega(n)$ nearest neighbor search time

 Nearest neighbor search is fundamental for information retrieval, data mining, machine learning and recommendation systems

- Nearest neighbor search is fundamental for information retrieval, data mining, machine learning and recommendation systems
- Balls, generalized hyperplanes and Voronoi cells are used for space partitioning

- Nearest neighbor search is fundamental for information retrieval, data mining, machine learning and recommendation systems
- Balls, generalized hyperplanes and Voronoi cells are used for space partitioning
- Depth-first and Best-first strategies are used for search

- Nearest neighbor search is fundamental for information retrieval, data mining, machine learning and recommendation systems
- Balls, generalized hyperplanes and Voronoi cells are used for space partitioning
- Depth-first and Best-first strategies are used for search

Thanks for your attention! Questions?

References

Course homepage

http://simsearch.yury.name/tutorial.html

Y. Lifshits

The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name

P. Zezula, G. Amato, V. Dohnal, M. Batko

Similarity Search: The Metric Space Approach. Springer, 2006.

http://www.nmis.isti.cnr.it/amato/similarity-search-book/

E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquín Searching in Metric Spaces. ACM Computing Surveys, 2001.

http://www.cs.ust.hk/~leichen/courses/comp630j/readings/acm-survey/searchinmetric.pdf

G.R. Hjaltason, H. Samet

Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003 http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft_gateway.cfm.pdf