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Chapter VI

Nearest Neighbors via Walking
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Orchard’s Algorithm
Preprocessing: Orchard’91

For every object pi ∈ S construct a list L(pi) of all
other objects sorted by their similarity to pi

pNN p5 p1 p2 p4 p3 p7 p6

q

Query processing:

Start from some random pNN

Inspect members of L(PNN) from left to right

Whenever meet p′ having d(p′, q) < d(pNN , q), set pNN := p′

Stopping condition: we reached p′ having
d(p′, q) ≥ 2d(pNN , q)
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Hierarchical Orchard’s Algorithm

Randomly choose S1 ⊂ S2 ⊂ . . . Sk = S with
|Si |/|Si−1| ≈ α > 1

Start with Orchard algorithm on S1

For every i from 2 to k apply Orchard’s algorithm
for Si using result of the previous step as a starting
point

Inspired by classic skip list technique Pugh’90
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Delaunay Graph Algorithm
Delaunay Graph:

Construct Voronoi diagram
for set in Euclidean space.
Draw an edge between
every two points whose
Voronoi cells are adjacent

Search algorithm:

Start from a random point

Check all Delaunay neighbors of current object p

If some p′ is closer to q, move to p′ and repeat

Otherwise return p

6 / 23

Delaunay Graph in General

Exercise: prove correctness of the above algorithm

Assume we have general metric space and full matrix of
pairwise distances. How Delaunay graph should be

defined?

Navarro, 2002: for any distance matrix any two objects
can be adjacent :-(
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Spatial Approximation Tree: Construction

Navarro’99:
Set a random object p to be root

Partitioning technique:

Inspect all other object in order by their similarity to p

Whenever some p′ is closer to p than to any of already
chosen children Ch(p) add p′ to children set

Put every other object p′′ to the subtree of closet
member of Ch(p)

Recursively repeat

Exercise: prove that covering radius for children subtree
is never exceeding covering radius of parent subtree
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SA-Tree: Search

Start from the root p

For every node to be inspected:

keep global candidate pNN

(closest object to query visited so far)

and pa — closest to q among

all ancestors and brothers of current node

Use usual depth-first or best-first tree traversal

Processing current node t:

Compute distances from q to all children of t

Go to child s whenever d(q, s) < d(q, pa(s)) + 2rNN
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SA-Tree: Correctness

Observation: fix node s, let pa be its ancestor/brother
and s ′ be some objected in its subtree. Then s ′ is closer
to s than to pa

≥ d(s,q)−d(pa,q)
2

pa q

s
s ′

If there exists s ′ such that d(s ′, q) < rNN then
d(s, q) < d(pa, q) + 2rNN
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Chapter VII

Matrix-Based Techniques
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Approximating and Eliminating Search Algorithm

Preprocessing: Vidal’86
Compute n × n matrix of pairwise distances in S

Query processing:
Maintain a set C of candidate objects, initially C := S

For every p ∈ C keep the lower bound dl(q, p)

Main loop:

Choose p ∈ C with smallest lower bound, compute
d(q, p), update pNN , rNN = d(q, pNN) if necessary

Approximating: update lower bounds in C using
d(q, p′) ≥ d(q, p) + d(p, p′) inequality

Eliminating: delete all elements in C whose lower bounds
exceeded rNN
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Linear AESA

Advantage of AESA: small number of distance computations
Disadvantages: large storage and non-distance computation

Linear AESA: Micó, Oncina, Vidal’94
Compute n ×m matrix choosing m objects as pivots

Range search:

Compute all query-pivot distances

Compute lower bounds for all non-pivot objects

Eliminate objects with lower bound exceeding search range

Explicitly check remaining non-pivots
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TLAESA

A combination of bisector tree and LAESA

Data structure: Micó, Oncina, Carrasco’96
Usual bisector tree
Additionally, m pivots
Distances from pivots to all objects are precomputed

Query processing
Compute distances from query to pivots
Depth-first/Best-first search in bisector tree
Additional condition to prune subtree of some object s:

∃i : |d(pi , s)− d(pi , q)| ≥ rc(s) + rNN
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Shapiro’s Algorithm (1/2)

Data structure: Shapiro’77
n ×m distance matrix (pivots p1, . . . , pm)
Non-pivot objects are sorted by there distances
to first pivot p1 : o1, . . . , on

p4

p3

p2

p1 o1 o2 o3 o4 o5 o6 o7

q
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Shapiro’s Algorithm (2/2)

p4

p3

p2

p1 o1 o2 o3 o4 o5 o6 o7

q

Query processing
Compute distances from query to pivots
Start with oi having d(p1, oi) ≈ d(p1, q)
Inspect other objects in order i − 1, i + 1, i − 2, i + 2, ...
Whenever meet better candidate change the center of inspection
Use flags to avoid double-check
Use all pivots to skip some objects (similar to AESA)
Stopping condition: |d(p1, oi)− d(p1, q)| ≥ rNN

Actually, it’s a mixture of LAESA and Orchard
But published before both: 1977 vs 1991 and 1992!
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Chapter VIII

Basic Techniques
for Euclidean Space
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Advantages of Euclidean Space

Rich mathematical formalisms for defining a
boundary of any set

Examples: rectangles, hyperplanes, polynomial
curves

Easy computation of lower bound on distance
between query point and any set boundary

(Tomorrow) Easy definable mappings to smaller
spaces
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k-d Tree

Preprocessing: Bentley, 1975
Top-down partitioning
On level l : split the current set
by hyperplane orthogonal to l mod k axis

Query processing:
Standard branch and bound
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R-Tree
Preprocessing: Guttman, 1984

Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group

Query processing:
Standard branch and bound

Insertions/delitions: similar to M-tree, B-tree
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Exercises

Prove correctness of Delaunay graph stopping condition

Prove monotonicity of covering radii in SA-tree
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Highlights

Orchard: use local search around the current
candidate, move whenever meet better option

Spatial tree approximation: emulating Delaunay
graph in general metric space

AESA: use every inter-object distance to get a lower
bound on unchecked distances

Euclid space: use explicit boundaries in metric trees

Thanks for your attention! Questions?
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