## **Other Use of Triangle Inequality**

Algorithms for Nearest Neighbor Search: Lecture 2

### Yury Lifshits http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology



1/23

# Chapter VI

**Nearest Neighbors via Walking** 

### Outline



- 2 Matrix-Based Techniques
- Basic Techniques for Euclidean Space

2 / 23

### Orchard's Algorithm

## Preprocessing: For every object $p_i \in S$ construct a list $L(p_i)$ of all other objects sorted by their similarity to $p_i$ q $p_{NN}$ $p_5$ $p_1$ $p_2$ $p_4$ $p_3$ $p_7$ $p_6$

#### Query processing:

- Start from some random *p<sub>NN</sub>*
- Inspect members of  $L(P_{NN})$  from left to right
- Whenever meet p' having  $d(p',q) < d(p_{NN},q)$ , set  $p_{NN} := p'$
- Stopping condition: we reached p' having d(p', q) ≥ 2d(p<sub>NN</sub>, q)

## Hierarchical Orchard's Algorithm

- Randomly choose  $S_1 \subset S_2 \subset \ldots S_k = S$  with  $|S_i|/|S_{i-1}| \approx \alpha > 1$
- Start with Orchard algorithm on  $S_1$
- For every *i* from 2 to *k* apply Orchard's algorithm for *S<sub>i</sub>* using result of the previous step as a starting point

Inspired by classic skip list technique Pugh'90

5 / 23

# Delaunay Graph in General

**Exercise:** prove correctness of the above algorithm

Assume we have general metric space and full matrix of pairwise distances. How Delaunay graph should be defined?

Navarro, 2002: for any distance matrix any two objects can be adjacent :-(

## Delaunay Graph Algorithm

### **Delaunay Graph:**

Construct Voronoi diagram for set in Euclidean space. Draw an edge between every two points whose Voronoi cells are adjacent



### Search algorithm:

- Start from a random point
- Check all Delaunay neighbors of current object *p*
- If some p' is closer to q, move to p' and repeat
- Otherwise return *p*

## Spatial Approximation Tree: Construction

### Navarro'99:

- Set a random object *p* to be root
- Partitioning technique:
  - Inspect all other object in order by their similarity to *p*
  - Whenever some p' is closer to p than to any of already chosen children Ch(p) add p' to children set
  - Put every other object p" to the subtree of closet member of Ch(p)
- Recursively repeat

**Exercise:** prove that covering radius for children subtree is never exceeding covering radius of parent subtree

## SA-Tree: Search

- Start from the root *p*
- For every node to be inspected: keep global candidate p<sub>NN</sub> (closest object to query visited so far) and p<sub>a</sub> — closest to q among all ancestors and brothers of current node
- Use usual depth-first or best-first tree traversal
- Processing current node *t*:
  - Compute distances from q to all children of t
  - Go to child s whenever  $d(q, s) < d(q, p_a(s)) + 2r_{NN}$

9 / 23

# Chapter VII

# **Matrix-Based Techniques**

## SA-Tree: Correctness

**Observation:** fix node *s*, let  $p_a$  be its ancestor/brother and *s'* be some objected in its subtree. Then *s'* is closer to *s* than to  $p_a$ 



If there exists s' such that  $d(s',q) < r_{NN}$  then  $d(s,q) < d(p_a,q) + 2r_{NN}$ 

10/23

Vidal'86

### Approximating and Eliminating Search Algorithm

### Preprocessing:

Compute  $n \times n$  matrix of pairwise distances in S

### Query processing:

- Maintain a set C of candidate objects, initially C := S
- For every  $p \in C$  keep the lower bound  $d_l(q, p)$
- Main loop:
  - Choose  $p \in C$  with smallest lower bound, compute d(q, p), update  $p_{NN}, r_{NN} = d(q, p_{NN})$  if necessary
  - Approximating: update lower bounds in C using d(q, p') ≥ d(q, p) + d(p, p') inequality
  - Eliminating: delete all elements in *C* whose lower bounds exceeded *r<sub>NN</sub>*

## Linear AESA

Advantage of AESA: small number of distance computations Disadvantages: large storage and non-distance computation

#### Linear AESA:

Micó, Oncina, Vidal'94

Compute  $n \times m$  matrix choosing m objects as pivots

### Range search:

- Compute all query-pivot distances
- Compute lower bounds for all non-pivot objects
- Eliminate objects with lower bound exceeding search range
- Explicitly check remaining non-pivots

13 / 23

# Shapiro's Algorithm (1/2)

### Data structure:

Shapiro'77

 $n \times m$  distance matrix (pivots  $p_1, \ldots, p_m$ ) Non-pivot objects are sorted by there distances to first pivot  $p_1 : o_1, \ldots, o_n$ 



# TLAESA

### A combination of bisector tree and LAESA

#### Data structure:

Micó, Oncina, Carrasco'96

Usual bisector tree Additionally, *m* pivots Distances from pivots to all objects are precomputed

### Query processing

Compute distances from query to pivots Depth-first/Best-first search in bisector tree Additional condition to prune subtree of some object *s*:

 $\exists i: |d(p_i,s) - d(p_i,q)| \geq r_c(s) + r_{NN}$ 

14 / 23

# Shapiro's Algorithm (2/2)



### Query processing

Compute distances from query to pivots Start with  $o_i$  having  $d(p_1, o_i) \approx d(p_1, q)$ Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...Whenever meet better candidate change the center of inspection Use flags to avoid double-check Use all pivots to skip some objects (similar to AESA) Stopping condition:  $|d(p_1, o_i) - d(p_1, q)| \ge r_{NN}$ 

Actually, it's a mixture of LAESA and Orchard But published before both: 1977 vs 1991 and 1992!

# Chapter VIII

## **Basic Techniques for Euclidean Space**

## Advantages of Euclidean Space

 Rich mathematical formalisms for defining a boundary of any set

**Examples:** rectangles, hyperplanes, polynomial curves

- Easy computation of lower bound on distance between query point and any set boundary
- (Tomorrow) Easy definable mappings to smaller spaces

18/23

Guttman, 1984

## k-d Tree

### **Preprocessing:**

Bentley, 1975

17 / 23

Top-down partitioning On level /: split the current set by hyperplane orthogonal to / mod k axis

### Query processing:

Standard branch and bound



## R-Tree

#### Preprocessing:

Bottom-up partitioning Keep bounding rectangles Every time: merge current rectangles and compute bounding rectangle for every group

Query processing:

Standard branch and bound

#### Insertions/delitions: similar to M-tree, B-tree



### Exercises

Prove correctness of Delaunay graph stopping condition

Prove monotonicity of covering radii in SA-tree

# Highlights

- Orchard: use local search around the current candidate, move whenever meet better option
- Spatial tree approximation: emulating Delaunay graph in general metric space
- AESA: use every inter-object distance to get a lower bound on unchecked distances
- Euclid space: use explicit boundaries in metric trees

# Thanks for your attention! Questions?

21 / 23

## References

http://simsearch.yury.name/tutorial.html **Course homepage** 9 Y. Lifshits The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name P. Zezula, G. Amato, V. Dohnal, M. Batko Similarity Search: The Metric Space Approach. Springer, 2006. http://www.nmis.isti.cnr.it/amato/similarity-search-book/ E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquín Searching in Metric Spaces. ACM Computing Surveys, 2001. http://www.cs.ust.hk/~leichen/courses/comp630j/readings/acm-survey/searchinmetric.pdf G.R. Hjaltason, H. Samet Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003 http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft\_gateway.cfm.pdf