Other Use of Triangle Inequality

Algorithms for Nearest Neighbor Search: Lecture 2

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

Chapter VI

Nearest Neighbors via Walking

Outline

Nearest Neighbors via Walking
(2) Matrix-Based TechniquesBasic Techniques for Euclidean Space

Orchard's Algorithm

Preprocessing:

For every object $p_{i} \in S$ construct a list $L\left(p_{i}\right)$ of all other objects sorted by their similarity to p_{i}

Query processing:

- Start from some random $p_{N N}$
- Inspect members of $L\left(P_{N N}\right)$ from left to right
- Whenever meet p^{\prime} having $d\left(p^{\prime}, q\right)<d\left(p_{N N}, q\right)$, set $p_{N N}:=p^{\prime}$
- Stopping condition: we reached p^{\prime} having $d\left(p^{\prime}, q\right) \geq 2 d\left(p_{N N}, q\right)$

Hierarchical Orchard's Algorithm

- Randomly choose $S_{1} \subset S_{2} \subset \ldots S_{k}=S$ with $\left|S_{i}\right| /\left|S_{i-1}\right| \approx \alpha>1$
- Start with Orchard algorithm on S_{1}
- For every i from 2 to k apply Orchard's algorithm for S_{i} using result of the previous step as a starting point

Inspired by classic skip list technique Pugh'90

Delaunay Graph in General

Exercise: prove correctness of the above algorithm

Assume we have general metric space and full matrix of pairwise distances. How Delaunay graph should be defined?

Navarro, 2002: for any distance matrix any two objects can be adjacent :-(

Delaunay Graph Algorithm

Delaunay Graph:

Construct Voronoi diagram for set in Euclidean space.
Draw an edge between every two points whose Voronoi cells are adjacent

Search algorithm:

- Start from a random point
- Check all Delaunay neighbors of current object p
- If some p^{\prime} is closer to q, move to p^{\prime} and repeat
- Otherwise return p

Spatial Approximation Tree: Construction

- Set a random object p to be root

Navarro'99:

- Partitioning technique:
- Inspect all other object in order by their similarity to p
- Whenever some p^{\prime} is closer to p than to any of already chosen children $\operatorname{Ch}(p)$ add p^{\prime} to children set
- Put every other object $p^{\prime \prime}$ to the subtree of closet member of $\mathrm{Ch}(p)$
- Recursively repeat

Exercise: prove that covering radius for children subtree is never exceeding covering radius of parent subtree

SA-Tree: Search

- Start from the root p
- For every node to be inspected:
keep global candidate $p_{N N}$
(closest object to query visited so far)
and p_{a} - closest to q among
all ancestors and brothers of current node
- Use usual depth-first or best-first tree traversal
- Processing current node t :
- Compute distances from q to all children of t
- Go to child s whenever $d(q, s)<d\left(q, p_{a}(s)\right)+2 r_{N N}$

Chapter VII

Matrix-Based Techniques

SA-Tree: Correctness

Observation: fix node s, let p_{a} be its ancestor/brother and s^{\prime} be some objected in its subtree. Then s^{\prime} is closer to s than to p_{a}

If there exists s^{\prime} such that $d\left(s^{\prime}, q\right)<r_{N N}$ then $d(s, q)<d\left(p_{a}, q\right)+2 r_{N N}$

Approximating and Eliminating Search Algorithm

Preprocessing:

Vidal'86
Compute $n \times n$ matrix of pairwise distances in S
Query processing:

- Maintain a set C of candidate objects, initially $C:=S$
- For every $p \in C$ keep the lower bound $d_{l}(q, p)$
- Main loop:
- Choose $p \in C$ with smallest lower bound, compute $d(q, p)$, update $p_{N N}, r_{N N}=d\left(q, p_{N N}\right)$ if necessary
- Approximating: update lower bounds in C using $d\left(q, p^{\prime}\right) \geq d(q, p)+d\left(p, p^{\prime}\right)$ inequality
- Eliminating: delete all elements in C whose lower bounds exceeded $r_{N N}$

Linear AESA

Advantage of AESA: small number of distance computations
Disadvantages: large storage and non-distance computation

Linear AESA:
 Micó, Oncina, Vidal'94

Compute $n \times m$ matrix choosing m objects as pivots
Range search:

- Compute all query-pivot distances
- Compute lower bounds for all non-pivot objects
- Eliminate objects with lower bound exceeding search range
- Explicitly check remaining non-pivots

Shapiro's Algorithm (1/2)

Data structure:

Shapiro'77
$n \times m$ distance matrix (pivots p_{1}, \ldots, p_{m})
Non-pivot objects are sorted by there distances
to first pivot $p_{1}: o_{1}, \ldots, o_{n}$

TLAESA

A combination of bisector tree and LAESA

Data structure:

Usual bisector tree
Additionally, m pivots
Distances from pivots to all objects are precomputed

Query processing

Compute distances from query to pivots
Depth-first/Best-first search in bisector tree
Additional condition to prune subtree of some object s :

$$
\exists i: \quad\left|d\left(p_{i}, s\right)-d\left(p_{i}, q\right)\right| \geq r_{c}(s)+r_{N N}
$$

Shapiro's Algorithm (2/2)

Query processing

Compute distances from query to pivots
Start with o_{i} having $d\left(p_{1}, o_{i}\right) \approx d\left(p_{1}, q\right)$
Inspect other objects in order $i-1, i+1, i-2, i+2, \ldots$
Whenever meet better candidate change the center of inspection
Use flags to avoid double-check
Use all pivots to skip some objects (similar to AESA)
Stopping condition: $\left|d\left(p_{1}, o_{i}\right)-d\left(p_{1}, q\right)\right| \geq r_{N N}$
Actually, it's a mixture of LAESA and Orchard
But published before both: 1977 vs 1991 and 1992!

Chapter VIII

Basic Techniques for Euclidean Space

k-d Tree

Preprocessing:

Bentley, 1975
Top-down partitioning
On level I: split the current set
by hyperplane orthogonal to $/ \bmod k$ axis
Query processing:
Standard branch and bound

Advantages of Euclidean Space

- Rich mathematical formalisms for defining a boundary of any set

Examples: rectangles, hyperplanes, polynomial curves

- Easy computation of lower bound on distance between query point and any set boundary
- (Tomorrow) Easy definable mappings to smaller spaces

R-Tree

Preprocessing:

Bottom-up partitioning
Keep bounding rectangles
Every time: merge current rectangles
and compute bounding rectangle for every group
Query processing:
Standard branch and bound
Insertions/delitions: similar to M-tree, B-tree

Exercises

Prove correctness of Delaunay graph stopping condition

Prove monotonicity of covering radii in SA-tree

Highlights

- Orchard: use local search around the current candidate, move whenever meet better option
- Spatial tree approximation: emulating Delaunay graph in general metric space
- AESA: use every inter-object distance to get a lower bound on unchecked distances
- Euclid space: use explicit boundaries in metric trees

Thanks for your attention! Questions?

References

Course homepage http://simsearch.yury.name/tutorial.html
(23) Y. Lifshits

The Homepage of Nearest Neighbors and Similarity Search
http://simsearch.yury.name
B P. Zezula, G. Amato, V. Dohnal, M. Batko
Similarity Search: The Metric Space Approach. Springer, 2006
http://www.nmis.isti.cnr.it/amato/similarity-search-book/
國 E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquín
Searching in Metric Spaces. ACM Computing Surveys, 2001.
http://www.cs.ust.hk/~1eichen/courses/comp630j/readings/acm-survey/searchinmetric.pdf
(R. G.R. Hjaltason, H. Samet

Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003 http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft_gateway.cfm.pdf

