Other Use of Triangle Inequality

Algorithms for Nearest Neighbor Search: Lecture 2

Yury Lifshits

http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

Outline

Nearest Neighbors via Walking

Outline

Nearest Neighbors via Walking

Matrix-Based Techniques

Outline

- Nearest Neighbors via Walking
- Matrix-Based Techniques
- Basic Techniques for Euclidean Space

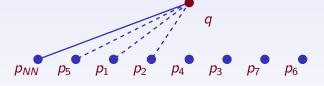
Chapter VI

Nearest Neighbors via Walking

Preprocessing:

Orchard'91

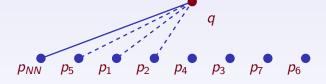
For every object $p_i \in S$ construct a list $L(p_i)$ of all other objects sorted by their similarity to p_i



Preprocessing:

Orchard'91

For every object $p_i \in S$ construct a list $L(p_i)$ of all other objects sorted by their similarity to p_i



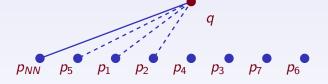
Query processing:

Start from some random p_{NN}

Preprocessing:

Orchard'91

For every object $p_i \in S$ construct a list $L(p_i)$ of all other objects sorted by their similarity to p_i

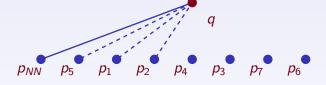


- Start from some random p_{NN}
- Inspect members of $L(P_{NN})$ from left to right

Preprocessing:

Orchard'91

For every object $p_i \in S$ construct a list $L(p_i)$ of all other objects sorted by their similarity to p_i

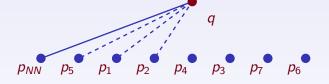


- Start from some random p_{NN}
- Inspect members of $L(P_{NN})$ from left to right
- Whenever meet p' having $d(p',q) < d(p_{NN},q)$, set $p_{NN} := p'$

Preprocessing:

Orchard'91

For every object $p_i \in S$ construct a list $L(p_i)$ of all other objects sorted by their similarity to p_i



- Start from some random p_{NN}
- Inspect members of $L(P_{NN})$ from left to right
- Whenever meet p' having $d(p',q) < d(p_{NN},q)$, set $p_{NN} := p'$
- Stopping condition: we reached p' having $d(p', q) \ge 2d(p_{NN}, q)$

Hierarchical Orchard's Algorithm

- Randomly choose $S_1 \subset S_2 \subset ... S_k = S$ with $|S_i|/|S_{i-1}| \approx \alpha > 1$
- Start with Orchard algorithm on S_1
- For every i from 2 to k apply Orchard's algorithm for S_i using result of the previous step as a starting point

Hierarchical Orchard's Algorithm

- Randomly choose $S_1 \subset S_2 \subset ... S_k = S$ with $|S_i|/|S_{i-1}| \approx \alpha > 1$
- Start with Orchard algorithm on S_1
- For every i from 2 to k apply Orchard's algorithm for S_i using result of the previous step as a starting point

Inspired by classic skip list technique Pugh'90

Delaunay Graph:

Construct Voronoi diagram for set in Euclidean space. Draw an edge between every two points whose Voronoi cells are adjacent

Delaunay Graph:

Construct Voronoi diagram for set in Euclidean space. Draw an edge between every two points whose Voronoi cells are adjacent

Search algorithm:

Start from a random point

Delaunay Graph:

Construct Voronoi diagram for set in Euclidean space. Draw an edge between every two points whose Voronoi cells are adjacent

Search algorithm:

- Start from a random point
- Check all Delaunay neighbors of current object p

Delaunay Graph:

Construct Voronoi diagram for set in Euclidean space. Draw an edge between every two points whose Voronoi cells are adjacent

Search algorithm:

- Start from a random point
- Check all Delaunay neighbors of current object p
- If some p' is closer to q, move to p' and repeat

Delaunay Graph:

Construct Voronoi diagram for set in Euclidean space. Draw an edge between every two points whose Voronoi cells are adjacent

Search algorithm:

- Start from a random point
- Check all Delaunay neighbors of current object p
- If some p' is closer to q, move to p' and repeat
- Otherwise return p

Delaunay Graph in General

Exercise: prove correctness of the above algorithm

Assume we have general metric space and full matrix of pairwise distances. How Delaunay graph should be defined?

Delaunay Graph in General

Exercise: prove correctness of the above algorithm

Assume we have general metric space and full matrix of pairwise distances. How Delaunay graph should be defined?

Navarro, 2002: for any distance matrix any two objects can be adjacent :-(

Spatial Approximation Tree: Construction

Navarro'99:

- Set a random object p to be root
- Partitioning technique:
 - Inspect all other object in order by their similarity to p
 - Whenever some p' is closer to p than to any of already chosen children Ch(p) add p' to children set
 - Put every other object p'' to the subtree of closet member of Ch(p)
- Recursively repeat

Spatial Approximation Tree: Construction

Navarro'99:

- Set a random object p to be root
- Partitioning technique:
 - Inspect all other object in order by their similarity to p
 - Whenever some p' is closer to p than to any of already chosen children Ch(p) add p' to children set
 - Put every other object p'' to the subtree of closet member of Ch(p)
- Recursively repeat

Exercise: prove that covering radius for children subtree is never exceeding covering radius of parent subtree

SA-Tree: Search

- Start from the root p
- For every node to be inspected:

```
keep global candidate p_{NN} (closest object to query visited so far) and p_a — closest to q among all ancestors and brothers of current node
```

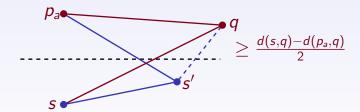
- Use usual depth-first or best-first tree traversal
- Processing current node t:
 - ullet Compute distances from q to all children of t
 - Go to child s whenever $d(q, s) < d(q, p_a(s)) + 2r_{NN}$

SA-Tree: Correctness

Observation: fix node s, let p_a be its ancestor/brother and s' be some objected in its subtree. Then s' is closer to s than to p_a

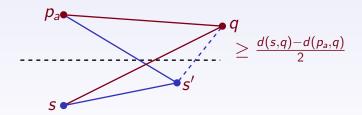
SA-Tree: Correctness

Observation: fix node s, let p_a be its ancestor/brother and s' be some objected in its subtree. Then s' is closer to s than to p_a



SA-Tree: Correctness

Observation: fix node s, let p_a be its ancestor/brother and s' be some objected in its subtree. Then s' is closer to s than to p_a



If there exists s' such that $d(s',q) < r_{NN}$ then $d(s,q) < d(p_a,q) + 2r_{NN}$

Chapter VII Matrix-Based Techniques

Approximating and Eliminating Search Algorithm

Preprocessing: Vidal'86

Compute $n \times n$ matrix of pairwise distances in S

Approximating and Eliminating Search Algorithm

Preprocessing:

Vidal'86

Compute $n \times n$ matrix of pairwise distances in S

- Maintain a set C of candidate objects, initially C := S
- For every $p \in C$ keep the lower bound $d_l(q, p)$
- Main loop:
 - Choose $p \in C$ with smallest lower bound, compute d(q, p), update $p_{NN}, r_{NN} = d(q, p_{NN})$ if necessary
 - Approximating: update lower bounds in C using $d(q, p') \ge d(q, p) + d(p, p')$ inequality
 - Eliminating: delete all elements in C whose lower bounds exceeded r_{NN}

Linear AESA

Advantage of AESA: small number of distance computations Disadvantages: large storage and non-distance computation

Linear AESA

Advantage of AESA: small number of distance computations Disadvantages: large storage and non-distance computation

Linear AESA: Micó, Oncina, Vidal'94

Compute $n \times m$ matrix choosing m objects as pivots

Linear AESA

Advantage of AESA: small number of distance computations **Disadvantages:** large storage and non-distance computation

Linear AESA: Micó, Oncina, Vidal'94

Compute $n \times m$ matrix choosing m objects as pivots

Range search:

- Compute all query-pivot distances
- Compute lower bounds for all non-pivot objects
- Eliminate objects with lower bound exceeding search range
- Explicitly check remaining non-pivots

TLAESA

A combination of bisector tree and LAESA

Data structure:

Micó, Oncina, Carrasco'96

Usual bisector tree

Additionally, *m* pivots

Distances from pivots to all objects are precomputed

TLAESA

A combination of bisector tree and LAESA

Data structure:

Micó, Oncina, Carrasco'96

Usual bisector tree

Additionally, *m* pivots

Distances from pivots to all objects are precomputed

Query processing

Compute distances from query to pivots

Depth-first/Best-first search in bisector tree

Additional condition to prune subtree of some object s:

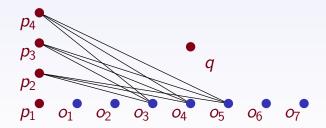
$$\exists i: |d(p_i,s)-d(p_i,q)| \geq r_c(s)+r_{NN}$$

Shapiro's Algorithm (1/2)

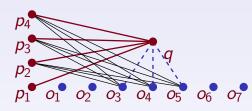
Data structure:

Shapiro'77

 $n \times m$ distance matrix (pivots p_1, \dots, p_m) Non-pivot objects are sorted by there distances to first pivot $p_1 : o_1, \dots, o_n$



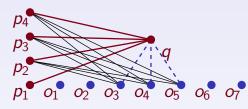
Shapiro's Algorithm (2/2)



Query processing

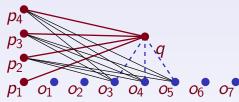
Compute distances from query to pivots

Shapiro's Algorithm (2/2)



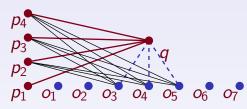
Query processing

Compute distances from query to pivots Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$



Query processing

Compute distances from query to pivots Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$ Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...



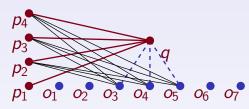
Query processing

Compute distances from query to pivots

Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$

Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...

Whenever meet better candidate change the center of inspection



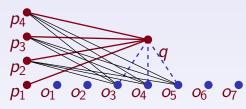
Query processing

Compute distances from query to pivots

Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$

Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...

Whenever meet better candidate change the center of inspection Use flags to avoid double-check



Query processing

Compute distances from query to pivots

Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$

Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...

Whenever meet better candidate change the center of inspection Use flags to avoid double-check

Use all pivots to skip some objects (similar to AESA)



Query processing

Compute distances from query to pivots

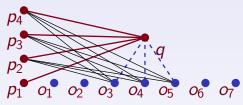
Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$

Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...

Whenever meet better candidate change the center of inspection Use flags to avoid double-check

Use all pivots to skip some objects (similar to AESA)

Stopping condition: $|d(p_1, o_i) - d(p_1, q)| \ge r_{NN}$



Query processing

Compute distances from query to pivots

Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$

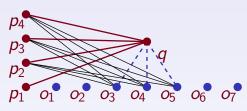
Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...

Whenever meet better candidate change the center of inspection Use flags to avoid double-check

Use all pivots to skip some objects (similar to AESA)

Stopping condition: $|d(p_1, o_i) - d(p_1, q)| \ge r_{NN}$

Actually, it's a mixture of LAESA and Orchard



Query processing

Compute distances from query to pivots

Start with o_i having $d(p_1, o_i) \approx d(p_1, q)$

Inspect other objects in order i - 1, i + 1, i - 2, i + 2, ...

Whenever meet better candidate change the center of inspection Use flags to avoid double-check

Use all pivots to skip some objects (similar to AESA)

Stopping condition: $|d(p_1, o_i) - d(p_1, q)| \ge r_{NN}$

Actually, it's a mixture of LAESA and Orchard But published before both: 1977 vs 1991 and 1992!

Chapter VIII

Basic Techniques for Euclidean Space

Advantages of Euclidean Space

- Rich mathematical formalisms for defining a boundary of any set
 - **Examples:** rectangles, hyperplanes, polynomial curves
- Easy computation of lower bound on distance between query point and any set boundary
- (Tomorrow) Easy definable mappings to smaller spaces

Preprocessing:

Bentley, 1975

Top-down partitioning
On level l: split the current set
by hyperplane orthogonal to $l \mod k$ axis

Preprocessing:

Bentley, 1975

Top-down partitioning
On level *I*: split the current set
by hyperplane orthogonal to *I* mod *k* axis

Query processing:

Preprocessing:

Bentley, 1975

Top-down partitioning
On level l: split the current set
by hyperplane orthogonal to $l \mod k$ axis

Query processing:

Preprocessing:

Bentley, 1975

Top-down partitioning
On level *I*: split the current set
by hyperplane orthogonal to *I* mod *k* axis

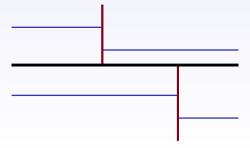
Query processing:

Preprocessing:

Bentley, 1975

Top-down partitioning
On level l: split the current set
by hyperplane orthogonal to $l \mod k$ axis

Query processing:



Preprocessing:

Guttman, 1984

Bottom-up partitioning Keep bounding rectangles

Every time: merge current rectangles

and compute bounding rectangle for every group

Preprocessing:

Guttman, 1984

Bottom-up partitioning Keep bounding rectangles Every time: merge current rectangles and compute bounding rectangle for every group

Query processing:

Preprocessing:

Guttman, 1984

Bottom-up partitioning Keep bounding rectangles Every time: merge current rectangles

and compute bounding rectangle for every group

Query processing:

Standard branch and bound

Preprocessing:

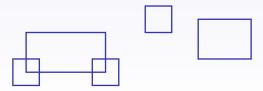
Guttman, 1984

Bottom-up partitioning Keep bounding rectangles

Every time: merge current rectangles and compute bounding rectangle for every group

Query processing:

Standard branch and bound



Preprocessing:

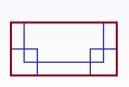
Guttman, 1984

Bottom-up partitioning Keep bounding rectangles

Every time: merge current rectangles and compute bounding rectangle for every group

Query processing:

Standard branch and bound



Preprocessing:

Guttman, 1984

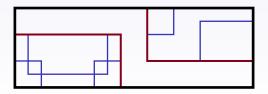
Bottom-up partitioning Keep bounding rectangles

Every time: merge current rectangles

and compute bounding rectangle for every group

Query processing:

Standard branch and bound



Exercises

Prove correctness of Delaunay graph stopping condition

Exercises

Prove correctness of Delaunay graph stopping condition

Prove monotonicity of covering radii in SA-tree

 Orchard: use local search around the current candidate, move whenever meet better option

- Orchard: use local search around the current candidate, move whenever meet better option
- Spatial tree approximation: emulating Delaunay graph in general metric space

- Orchard: use local search around the current candidate, move whenever meet better option
- Spatial tree approximation: emulating Delaunay graph in general metric space
- AESA: use every inter-object distance to get a lower bound on unchecked distances
- Euclid space: use explicit boundaries in metric trees

- Orchard: use local search around the current candidate, move whenever meet better option
- Spatial tree approximation: emulating Delaunay graph in general metric space
- AESA: use every inter-object distance to get a lower bound on unchecked distances
- Euclid space: use explicit boundaries in metric trees

Thanks for your attention! Questions?

References

Course homepage

http://simsearch.yury.name/tutorial.html

Y. Lifshits

The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name

P. Zezula, G. Amato, V. Dohnal, M. Batko

Similarity Search: The Metric Space Approach. Springer, 2006.

http://www.nmis.isti.cnr.it/amato/similarity-search-book/

E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroquín

Searching in Metric Spaces. ACM Computing Surveys, 2001.

 $\underline{\text{http://www.cs.ust.hk/\'ieichen/courses/comp630j/readings/acm-survey/searchinmetric.pdf}}$

G.R. Hjaltason, H. Samet

Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003

http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft_gateway.cfm.pdf