
Mapping-based Techniques
Algorithms for Nearest Neighbor Search: Lecture 3

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg
California Institute of Technology

1 / 26

Outline

1 Locality-Sensitive Hashing (LSH)
General Scheme
Ball Grids Hashing

2 Random Projections

2 / 26

Approximate Algorithms

c-Approximate r-range query: if there at least one
p ∈ S : d(q, p) ≤ r return some p′ : d(q, p′) ≤ cr

q

r
cr

c-Approximate nearest neighbor query: return some
p′ ∈ S : d(p′, q) ≤ crNN , where rNN = minp∈S d(p, q)

Today we consider only range queries
3 / 26

Today’s Focus

Data models:

d -dimensional Euclidean space: Rd

Hamming cube: {0, 1}d with Hamming distance

Our goal: provable performance bounds

Sublinear search time, near-linear preprocessing space

Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing

4 / 26

http://yury.name


Chapter IX

Locality-Sensitive Hashing

5 / 26

Definition of LSH

Indyk&Motwani’98

Locality-sensitive hash family H with parameters
(c , r , P1, P2):

If ‖p − q‖ ≤ r then PrH[h(p) = h(q)] ≥ P1

If ‖p − q‖ ≥ cr then PrH[h(p) = h(q)] ≤ P2

6 / 26

The Power of LSH

Notation: ρ = log(1/P1)
log(1/P2)

< 1

Theorem

Any (c , r , P1, P2)-locality-sensitive hashing leads to an
algorithm for c-approximate r -range search with
(roughly) nρ query time and n1+ρ preprocessing space

Proof in the next four slides

7 / 26

LSH: Preprocessing

Composite hash function: g(p) =< h1(p), . . . , hk(p) >

Preprocessing with parameters L, k :

1 Choose at random L composite hash functions of k
components each

2 Hash every p ∈ S into buckets g1(p), . . . , gL(p)

Preprocessing space: O(Ln)

8 / 26



LSH: Search

1 Compute g1(q), . . . , gL(q)

2 Go to corresponding buckets and explicitly check
d(p, q) ≤?cr for every point there

3 Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)

9 / 26

LSH: Analysis (1/2)

In order to have probability of error at most δ we set k , L
such that

Pk
2 n ≈ 1 L ≈ (1/P1)

k log(1/δ)

Solving these constraints:

k =
log n

log(1/P2)

L = (1/P1)
log n

log(1/P2) log(1/δ) = n
log(1/P1)
log(1/P2) log(1/δ) = nρ log(1/δ)

10 / 26

LSH: Analysis (2/2)

The expected number of cr -far objects to be tried is
Pk

2 Ln ≈ L

For true r -neighbor the chance to be hashed to the same
bucket as q is at least

1− (1− (1/P1)
k)L ≥ 1− (1/e)

L

(1/P1)k ≥ 1− δ

Preprocessing space O(Ln) ≈ n1+ρ+o(1)

Search O(L) ≈ nρ+o(1)

11 / 26

Ball Grids Hashing: Idea

1 Apply low distortion embedding A into
t-dimensional Euclidean space

2 Set up U 4w -step grids of w -radius balls that all
together cover t-dimensional space

3 Hash object p to the id of the first ball covering
A(p)

12 / 26



BG Hashing: Initialization

Parameters: t = log2/3 n, w = r log1/6 n, U = 2t log t log n

Construct d × t matrix A taking every element at
random from normal distribution N(0, 1√

t
)

For every 1 ≤ i ≤ U choose a random shift
v̄i ∈ [0, 4w ]t

13 / 26

BG Hashing: Computing

1 Compute p′ = A(p)

2 From i = 1 to U check whether p′ is covered by i -th
grid of balls. If so return i and ball’s center and
stop.

3 If no such ball found return FAIL

14 / 26

BG Hashing: Analysis

Fact: Probability of ‖Ap−Ap′‖
‖p−p′‖ /∈ [1− ε, 1 + ε] is at most

exp(−ε2t)

Given two points p, s ∈ Rt : ‖p − s‖ = ∆:

Pr [h(p) = h(s)] =
B(p, w) ∩ B(s, w)

B(p, w) ∪ B(s, w)

15 / 26

BG Hashing: Final Result

3-pages computational proof:

ρ =
log(1/P1)

log(1/P2)
= 1/c2 + o(1)

Theorem (Andoni & Indyk 2006)

Consider c-approximate r -range search in d-dimensional
space. Then for every δ there is a randomized algorithm
with (roughly) n1/c2+o(1) query time and n1+1/c2+o(1)

preprocessing space. For every query this algorithm
answers correctly with probability at least 1− δ

16 / 26



Future of LSH

Achievements:

Provably sublinear search time

Utilization of low-distortion embedding

Current drawbacks:

Probability of error can not be amplified only in preprocessing
stage, it can not be decreased to 1/n

Asymptotic analysis of power degree: from what place
n1/c2+o(1) is really sublinear?

For nearest neighbor search c = max rNN(q)
rFN(q)

, where rFN(q) is

the farthest neighbor. This might be pretty close to 1

17 / 26

Chapter X

Random Projections

18 / 26

Self-Reduction in a Nutshell

Problem: (1 + ε)-approximate l -range queries in
d -dimensional Hamming cube

Apply embedding {0, 1}d into {0, 1}k such that
l -neighbors usually fall within δ1k from each other,
while (1 + ε)l -far objects are embedded at least δ2k
from each other

Precompute all (δ1+δ2

2 )k-neighbors for every point in
{0, 1}k

In search step, embed q and explicitly check all
precomputed (δ1+δ2

2 )k-neighbors

19 / 26

RP: Inner product test

Single test:

Choose random subset of positions of size 1
2l

Randomly assign 0 or 1 to every of them, the rest
assign to 0, call the resulting vector r

hr(p) = r · p

Claim: there exist constants δ1 > δ2

Hd(p, s) ≤ l ⇒ Pr [h(p) = h(q)] ≥ δ1

Hd(p, s) ≥ (1 + ε)l ⇒ Pr [h(p) = h(q)] ≤ δ2

20 / 26



RP: Preprocessing

Inner product mapping:

Choose k random tests r1, . . . , rk

Map every p into A(p) = hr1(p) . . . hrk(p)

Data Structure

Apply inner product mapping to all strings in
database

For every v ∈ {0, 1}k precompute all
(δ1+δ2

2 )k-neighbors

21 / 26

RP: Search

Compute A(q) = hr1(q) . . . hrk(q)

Retrieve and explicitly check all (δ1+δ2

2 )k-neighbors
of A(q)

Analysis:

Chances to miss true l -neighbor: exp(−δ1−δ2

2δ1
k)

Chances to waste time on (1 + ε)l -far neighbor:
exp(−δ1−δ2

2δ1
k)

Thus we should take near-logarithmic k which lead to
polynomial size of {0, 1}k to be NN-precomputed

22 / 26

RP: Formal Claim

Theorem (Kushilevetz, Ostrovsky, Rabani, 1998)

Consider (1 + ε)-approximate l-range search in
d-dimensional Hamming cube. Then for every µ there is
a randomized algorithm with (roughly) d2polylog(d , n)
query time and nO(ε−2) preprocessing space. For every
query this algorithm answers correctly with probability at
least 1− µ

23 / 26

Exercise

Prove that 2O(t) number of randomly chosen (w , 4w)
ball grids is enough to cover t-dimensional space with

probability 1/2

24 / 26



Highlights

Locality-sensitive hashing: use random projection for
defining a candidate list, check its members
explicitly

Random projections: low-distortion embedding into
finite sets + fully precomputed nearest neighbors

Thanks for your attention! Questions?

25 / 26

References

Course homepage http://simsearch.yury.name/tutorial.html

Y. Lifshits
The Homepage of Nearest Neighbors and Similarity Search
http://simsearch.yury.name

A. Andoni, P. Indyk
Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions. FOCS’06

http://web.mit.edu/andoni/www/papers/cSquared.pdf

E. Kushilevitz, R. Ostrovsky, Y. Rabani
Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. STOC’98

http://www.cs.technion.ac.il/~rabani/pss/Publications/KushilevitzOR98.ps.gz

26 / 26

http://simsearch.yury.name/tutorial.html
http://simsearch.yury.name
http://web.mit.edu/andoni/www/papers/cSquared.pdf
http://www.cs.technion.ac.il/~rabani/pss/Publications/KushilevitzOR98.ps.gz

	Locality-Sensitive Hashing (LSH)
	General Scheme
	Ball Grids Hashing

	Random Projections

