Mapping-based Techniques

Algorithms for Nearest Neighbor Search: Lecture 3

Yury Lifshits http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

Outline

Locality-Sensitive Hashing (LSH)

- General Scheme
- Ball Grids Hashing

Outline

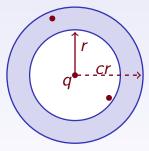
Locality-Sensitive Hashing (LSH)

- General Scheme
- Ball Grids Hashing

Random Projections

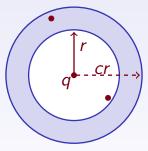
Approximate Algorithms

c-**Approximate** *r*-**range query:** if there at least one $p \in S$: $d(q, p) \leq r$ return some p': $d(q, p') \leq cr$



Approximate Algorithms

c-**Approximate** *r*-**range query:** if there at least one $p \in S$: $d(q, p) \leq r$ return some p': $d(q, p') \leq cr$



c-**Approximate nearest neighbor query:** return some $p' \in S$: $d(p',q) \leq cr_{NN}$, where $r_{NN} = \min_{p \in S} d(p,q)$

Today we consider only range queries

Today's Focus

Data models:

- *d*-dimensional Euclidean space: \mathbb{R}^d
- Hamming cube: $\{0,1\}^d$ with Hamming distance

Today's Focus

Data models:

- *d*-dimensional Euclidean space: \mathbb{R}^d
- Hamming cube: $\{0,1\}^d$ with Hamming distance

Our goal: provable performance bounds

- Sublinear search time, near-linear preprocessing space
- Logarithmic search time, polynomial preprocessing space

Today's Focus

Data models:

- *d*-dimensional Euclidean space: \mathbb{R}^d
- Hamming cube: $\{0,1\}^d$ with Hamming distance

Our goal: provable performance bounds

- Sublinear search time, near-linear preprocessing space
- Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor search with logarithmic search and linear preprocessing

Chapter IX

Locality-Sensitive Hashing

Definition of LSH

Indyk&Motwani'98

Locality-sensitive hash family \mathcal{H} with parameters (c, r, P_1, P_2) :

- If $\|p-q\| \leq r$ then $\mathscr{Pr}_{\mathcal{H}}[h(p) = h(q)] \geq P_1$
- If $\|p-q\| \ge cr$ then $\pounds_{\mathcal{P}_{\mathcal{H}}}[h(p) = h(q)] \le P_2$

The Power of LSH

Notation:
$$ho = rac{\log(1/P_1)}{\log(1/P_2)} < 1$$

Theorem

Any (c, r, P_1, P_2) -locality-sensitive hashing leads to an algorithm for c-approximate r-range search with (roughly) n^{ρ} query time and $n^{1+\rho}$ preprocessing space

The Power of LSH

Notation:
$$ho = rac{\log(1/P_1)}{\log(1/P_2)} < 1$$

Theorem

Any (c, r, P_1, P_2) -locality-sensitive hashing leads to an algorithm for c-approximate r-range search with (roughly) n^{ρ} query time and $n^{1+\rho}$ preprocessing space

Proof in the next four slides

LSH: Preprocessing

Composite hash function: $g(p) = \langle h_1(p), \ldots, h_k(p) \rangle$

Composite hash function: $g(p) = \langle h_1(p), \ldots, h_k(p) \rangle$

Preprocessing with parameters L, k:

Choose at random L composite hash functions of k components each

Solution Hash every $p \in S$ into buckets $g_1(p), \ldots, g_L(p)$

Preprocessing space: O(Ln)

LSH: Search

- Compute $g_1(q), \ldots, g_L(q)$
- Go to corresponding buckets and explicitly check d(p,q) ≤?cr for every point there
- Stopping conditions: (1) we found a satisfying object or (2) we tried at least <u>3L</u> objects

Search time is $\mathcal{O}(L)$

LSH: Analysis (1/2)

In order to have probability of error at most δ we set $\textbf{\textit{k}},\textbf{\textit{L}}$ such that

$$P_2^k n \approx 1$$
 $L \approx (1/P_1)^k \log(1/\delta)$

LSH: Analysis (1/2)

In order to have probability of error at most δ we set $\textbf{\textit{k}},\textbf{\textit{L}}$ such that

$$P_2^k n \approx 1$$
 $L \approx (1/P_1)^k \log(1/\delta)$

Solving these constraints:

$$k = \frac{\log n}{\log(1/P_2)}$$

LSH: Analysis (1/2)

In order to have probability of error at most δ we set $\textbf{\textit{k}}, \textbf{\textit{L}}$ such that

$$P_2^k n \approx 1$$
 $L \approx (1/P_1)^k \log(1/\delta)$

Solving these constraints:

$$k = \frac{\log n}{\log(1/P_2)}$$

 $L = (1/P_1)^{rac{\log n}{\log(1/P_2)}} \log(1/\delta) = n^{rac{\log(1/P_1)}{\log(1/P_2)}} \log(1/\delta) = n^{
ho} \log(1/\delta)$

LSH: Analysis (2/2)

The expected number of *cr*-far objects to be tried is $P_2^k Ln \approx L$

For true r-neighbor the chance to be hashed to the same bucket as q is at least

 $1 - (1 - (1/P_1)^k)^L \ge 1 - (1/e)^{\frac{L}{(1/P_1)^k}} \ge 1 - \delta$

The expected number of *cr*-far objects to be tried is $P_2^k Ln \approx L$

For true r-neighbor the chance to be hashed to the same bucket as q is at least

$$1 - (1 - (1/P_1)^k)^L \ge 1 - (1/e)^{rac{L}{(1/P_1)^k}} \ge 1 - \delta$$

Preprocessing space $\mathcal{O}(Ln) \approx n^{1+\rho+o(1)}$ Search $\mathcal{O}(L) \approx n^{\rho+o(1)}$

Ball Grids Hashing: Idea

 Apply low distortion embedding A into t-dimensional Euclidean space

Ball Grids Hashing: Idea

- Apply low distortion embedding A into t-dimensional Euclidean space
- Set up U 4w-step grids of w-radius balls that all together cover t-dimensional space

Ball Grids Hashing: Idea

- Apply low distortion embedding A into t-dimensional Euclidean space
- Set up U 4w-step grids of w-radius balls that all together cover t-dimensional space
- Hash object p to the id of the first ball covering A(p)

BG Hashing: Initialization

Parameters: $t = \log^{2/3} n, w = r \log^{1/6} n, U = 2^{t \log t} \log n$

- Construct $d \times t$ matrix A taking every element at random from normal distribution $N(0, \frac{1}{\sqrt{t}})$
- For every $1 \le i \le U$ choose a random shift $\bar{v}_i \in [0, 4w]^t$

BG Hashing: Computing

- Compute p' = A(p)
- From i = 1 to U check whether p' is covered by i-th grid of balls. If so return i and ball's center and stop.
- If no such ball found return FAIL

BG Hashing: Analysis

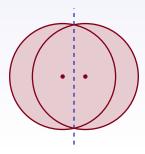
Fact: Probability of $\frac{\|Ap-Ap'\|}{\|p-p'\|} \notin [1-\varepsilon, 1+\varepsilon]$ is at most $\exp(-\varepsilon^2 t)$

BG Hashing: Analysis

Fact: Probability of $\frac{\|A\rho - A\rho'\|}{\|\rho - \rho'\|} \notin [1 - \varepsilon, 1 + \varepsilon]$ is at most $\exp(-\varepsilon^2 t)$

Given two points $p, s \in \mathbb{R}^t : ||p - s|| = \Delta$:

$$Pr[h(p) = h(s)] = \frac{B(p, w) \cap B(s, w)}{B(p, w) \cup B(s, w)}$$



BG Hashing: Final Result

3-pages computational proof:

$$ho = rac{\log(1/P_1)}{\log(1/P_2)} = 1/c^2 + o(1)$$

BG Hashing: Final Result

3-pages computational proof:

$$ho = rac{\log(1/P_1)}{\log(1/P_2)} = 1/c^2 + o(1)$$

Theorem (Andoni & Indyk 2006)

Consider *c*-approximate *r*-range search in *d*-dimensional space. Then for every δ there is a randomized algorithm with (roughly) $n^{1/c^2+o(1)}$ query time and $n^{1+1/c^2+o(1)}$ preprocessing space. For every query this algorithm answers correctly with probability at least $1 - \delta$

Future of LSH

Achievements:

- Provably sublinear search time
- Utilization of low-distortion embedding

Future of LSH

Achievements:

- Provably sublinear search time
- Utilization of low-distortion embedding

Current drawbacks:

- Probability of error can not be amplified only in preprocessing stage, it can not be decreased to 1/n
- Asymptotic analysis of power degree: from what place n^{1/c²+o(1)} is really sublinear?
- For nearest neighbor search $c = \max \frac{r_{NN}(q)}{r_{FN}(q)}$, where $r_{FN}(q)$ is the farthest neighbor. This might be pretty close to 1

Chapter X

Random Projections

Self-Reduction in a Nutshell

Problem: $(1 + \varepsilon)$ -approximate *I*-range queries in *d*-dimensional Hamming cube

Self-Reduction in a Nutshell

Problem: $(1 + \varepsilon)$ -approximate *I*-range queries in *d*-dimensional Hamming cube

- Apply embedding {0,1}^d into {0,1}^k such that
 I-neighbors usually fall within δ₁k from each other, while (1 + ε)*I*-far objects are embedded at least δ₂k from each other
- Precompute all $\left(\frac{\delta_1+\delta_2}{2}\right)k$ -neighbors for every point in $\{0,1\}^k$
- In search step, embed q and explicitly check all precomputed $\left(\frac{\delta_1+\delta_2}{2}\right)k$ -neighbors

RP: Inner product test

Single test:

- Choose random subset of positions of size $\frac{1}{2l}$
- Randomly assign 0 or 1 to every of them, the rest assign to 0, call the resulting vector *r*

•
$$h_r(p) = r \cdot p$$

RP: Inner product test

Single test:

- Choose random subset of positions of size $\frac{1}{2l}$
- Randomly assign 0 or 1 to every of them, the rest assign to 0, call the resulting vector *r*

•
$$h_r(p) = r \cdot p$$

Claim: there exist constants $\delta_1 > \delta_2$

• $H_d(p,s) \leq l \Rightarrow Pr[h(p) = h(q)] \geq \delta_1$

• $H_d(p,s) \ge (1+\varepsilon)I \Rightarrow Pr[h(p) = h(q)] \le \delta_2$

RP: Preprocessing

Inner product mapping:

- Choose k random tests r_1, \ldots, r_k
- Map every p into $A(p) = h_{r_1}(p) \dots h_{r_k}(p)$

RP: Preprocessing

Inner product mapping:

- Choose k random tests r_1, \ldots, r_k
- Map every p into $A(p) = h_{r_1}(p) \dots h_{r_k}(p)$

Data Structure

- Apply inner product mapping to all strings in database
- For every $v \in \{0,1\}^k$ precompute all $(rac{\delta_1+\delta_2}{2})k$ -neighbors

RP: Search

- Compute $A(q) = h_{r_1}(q) \dots h_{r_k}(q)$
- Retrieve and explicitly check all $\left(\frac{\delta_1+\delta_2}{2}\right)k$ -neighbors of A(q)

RP: Search

- Compute $A(q) = h_{r_1}(q) \dots h_{r_k}(q)$
- Retrieve and explicitly check all $(\frac{\delta_1+\delta_2}{2})k$ -neighbors of A(q)

Analysis:

- Chances to miss true *l*-neighbor: $\exp(-\frac{\delta_1-\delta_2}{2\delta_1}k)$
- Chances to waste time on $(1 + \varepsilon)$ /-far neighbor: $\exp(-\frac{\delta_1 \delta_2}{2\delta_1}k)$

RP: Search

- Compute $A(q) = h_{r_1}(q) \dots h_{r_k}(q)$
- Retrieve and explicitly check all $\left(\frac{\delta_1+\delta_2}{2}\right)k$ -neighbors of A(q)

Analysis:

- Chances to miss true *l*-neighbor: $\exp(-\frac{\delta_1-\delta_2}{2\delta_1}k)$
- Chances to waste time on $(1 + \varepsilon)$ /-far neighbor: $\exp(-\frac{\delta_1 - \delta_2}{2\delta_1}k)$

Thus we should take near-logarithmic k which lead to polynomial size of $\{0,1\}^k$ to be NN-precomputed

Theorem (Kushilevetz, Ostrovsky, Rabani, 1998) Consider $(1 + \varepsilon)$ -approximate *l*-range search in *d*-dimensional Hamming cube. Then for every μ there is a randomized algorithm with (roughly) d^2 polylog(*d*, *n*) query time and $n^{\mathcal{O}(\varepsilon^{-2})}$ preprocessing space. For every query this algorithm answers correctly with probability at least $1 - \mu$

Prove that $2^{\mathcal{O}(t)}$ number of randomly chosen (w, 4w) ball grids is enough to cover *t*-dimensional space with probability 1/2

Highlights

 Locality-sensitive hashing: use random projection for defining a candidate list, check its members explicitly

Highlights

- Locality-sensitive hashing: use random projection for defining a candidate list, check its members explicitly
- Random projections: low-distortion embedding into finite sets + fully precomputed nearest neighbors

Highlights

- Locality-sensitive hashing: use random projection for defining a candidate list, check its members explicitly
- Random projections: low-distortion embedding into finite sets + fully precomputed nearest neighbors

Thanks for your attention! Questions?

References

Course homepage

http://simsearch.yury.name/tutorial.html

Y. Lifshits The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name

A. Andoni, P. Indyk

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. FOCS'06 http://web.mit.edu/andoni/www/papers/cSquared.pdf

E. Kushilevitz, R. Ostrovsky, Y. Rabani Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. stoC'98 http://www.cs.technion.ac.il/~rabani/pss/Publications/KushilevitzOR98.ps.gz