Mapping-based Techniques

Algorithms for Nearest Neighbor Search: Lecture 3

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg
California Institute of Technology

RuSSIR

Russian Summer School
in Information Retrieval

/26

http://yury.name

Outline

@ Locality-Sensitive Hashing (LSH)
@ General Scheme
e Ball Grids Hashing

2/26

Outline

@ Locality-Sensitive Hashing (LSH)
@ General Scheme
e Ball Grids Hashing

© Random Projections

2/26

Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

26

Approximate Algorithms

c-Approximate r-range query: if there at least one
peS: d(g,p) <r returnsome p': d(q,p') <cr

c-Approximate nearest neighbor query: return some
p'eS: d(p,q) < crun, where ryy = minpes d(p, q)

Today we consider only range queries

Today's Focus

Data models:
@ d-dimensional Euclidean space: R¢

@ Hamming cube: {0,1}9 with Hamming distance

26

Today's Focus

Data models:
@ d-dimensional Euclidean space: R¢

@ Hamming cube: {0,1}9 with Hamming distance

Our goal: provable performance bounds
@ Sublinear search time, near-linear preprocessing space

@ Logarithmic search time, polynomial preprocessing space

4/26

Today's Focus

Data models:
@ d-dimensional Euclidean space: R

@ Hamming cube: {0,1}9 with Hamming distance

Our goal: provable performance bounds
@ Sublinear search time, near-linear preprocessing space

@ Logarithmic search time, polynomial preprocessing space

Still an open problem: approximate nearest neighbor
search with logarithmic search and linear preprocessing

4/26

Chapter IX

Locality-Sensitive Hashing

Definition of LSH
Indyk&Motwani’98

Locality-sensitive hash family H with parameters
(C7r7P17P2):

o If [p — ql| < r then 2ry[h(p) = h(q)] > P1
o If ||p— q|| > cr then Pry[h(p) = h(q)] < P;

\/ |

The Power of LSH

Notation: p = :zigﬁg <1

Theorem

Any (c, r, Py, P;)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space

26

The Power of LSH

log(1/P,)

og(1/Ps) < 1

Notation: p =

Theorem

Any (c, r, Py, P;)-locality-sensitive hashing leads to an
algorithm for c-approximate r-range search with
(roughly) n” query time and n*™* preprocessing space

Proof in the next four slides

26

LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >

26

LSH: Preprocessing

Composite hash function: g(p) =< hi(p), ..., he(p) >
Preprocessing with parameters L, k:

@ Choose at random L composite hash functions of k
components each

@ Hash every p € S into buckets gi1(p), ..., g.(p)

Preprocessing space: O(Ln)

LSH: Search

@ Compute g1(q),- .., &.(q)

@ Go to corresponding buckets and explicitly check
d(p, q) <?cr for every point there

@ Stopping conditions: (1) we found a satisfying
object or (2) we tried at least 3L objects

Search time is O(L)

26

LSH: Analysis (1/2)

In order to have probability of error at most ¢ we set k, L
such that

szn% 1 L~ (1/P1)klog(1/5)

10/26

LSH: Analysis (1/2)

In order to have probability of error at most ¢ we set k, L
such that

szn% 1 L~ (1/P1)klog(1/5)

Solving these constraints:

log n

k= log(1/P,)

10/26

LSH: Analysis (1/2)

In order to have probability of error at most ¢ we set k, L
such that

szn% 1 L~ (1/P1)klog(1/5)

Solving these constraints:

log n

k= log(1/P,)

L = (1/Py)50# log(1/6) = n*e0/™) log(1/6) = n” log(1/5)

10/26

LSH: Analysis (2/2)

The expected number of cr-far objects to be tried is
P¥ln= L

For true r-neighbor the chance to be hashed to the same
bucket as g is at least

1 (1= (/P >1— (1/e)TAF >1—6

11/26

LSH: Analysis (2/2)

The expected number of cr-far objects to be tried is
P¥ln= L

For true r-neighbor the chance to be hashed to the same
bucket as g is at least

1 (1= (/P >1— (1/e)TAF >1—6

Preprocessing space O(Ln) ~ n'*r+o(l)
Search O(L) =~ pPto(l)

11/26

Ball Grids Hashing: Idea

Q@ Apply low distortion embedding A into
t-dimensional Euclidean space

12 /26

Ball Grids Hashing: Idea

Q@ Apply low distortion embedding A into
t-dimensional Euclidean space

@ Set up U 4w-step grids of w-radius balls that all
together cover t-dimensional space

12 /26

Ball Grids Hashing: Idea

Q@ Apply low distortion embedding A into
t-dimensional Euclidean space

@ Set up U 4w-step grids of w-radius balls that all
together cover t-dimensional space

@ Hash object p to the id of the first ball covering
A(p)

12 /26

BG Hashing: Initialization

Parameters: t = log?’3 n,w = rlog®n, U = 2t"8t|og n

@ Construct d x t matrix A taking every element at
random from normal distribution N/(0, \/%)

@ For every 1 </ < U choose a random shift
v, € [O,4W]t

13 /26

BG Hashing: Computing

@ Compute p' = A(p)

@ From / =1 to U check whether p’ is covered by i-th
grid of balls. If so return / and ball's center and
stop.

© If no such ball found return FAIL

14 /26

BG Hashing: Analysis

Fact: Probability of 12 Hp A,’ﬁ ¢ [1—¢,1+¢]is at most
exp(—c’t)

15/26

BG Hashing: Analysis

Ap'||

o € [1—e,1+¢]is at most

Fact: Probability of 172241
exp(—et)
Given two points p,s € Rf : ||p — s|| =
B(p, w) N B(s, w)
rh(p) = h(s)l = B W T B(s, w)

15/26

BG Hashing: Final Result

3-pages computational proof:

_ log(1/P1)

P = Tog(1/P,) 1/c® + o(1)

16 /26

BG Hashing: Final Result

3-pages computational proof:

_ log(1/Py)

P = Tog(1/P,) 1/c® + o(1)

Theorem (Andoni & Indyk 2006)

Consider c-approximate r-range search in d-dimensional
space. Then for every 0 there is a randomized algorithm
with (roughly) n¥/<+°() query time and n**1/<*+o(1)
preprocessing space. For every query this algorithm
answers correctly with probability at least 1 — 0

26

Future of LSH

Achievements:

@ Provably sublinear search time

@ Utilization of low-distortion embedding

17 /26

Future of LSH

Achievements:

@ Provably sublinear search time

@ Utilization of low-distortion embedding

Current drawbacks:

@ Probability of error can not be amplified only in preprocessing
stage, it can not be decreased to 1/n

@ Asymptotic analysis of power degree: from what place
nt/<*+o() js really sublinear?

@ For nearest neighbor search ¢ = max "”"g;’; where ren(q) is
the farthest neighbor. This might be pretty close to 1

17 /26

Chapter X

Random Projections

Self-Reduction in a Nutshell

Problem: (1 -+ ¢)-approximate /-range queries in
d-dimensional Hamming cube

19/26

Self-Reduction in a Nutshell

Problem: (1 + ¢)-approximate /-range queries in
d-dimensional Hamming cube

e Apply embedding {0,1}? into {0, 1}* such that
I-neighbors usually fall within 01k from each other,
while (1 4 ¢)/-far objects are embedded at least d,k
from each other

51”2)/(neighbors for every point in

@ Precompute all (
{0,1}

@ In search step, embed g and explicitly check all
precomputed (@)k—neighbors

19/26

RP: Inner product test
Single test:
@ Choose random subset of positions of size 2,

@ Randomly assign 0 or 1 to every of them, the rest
assign to 0, call the resulting vector r

o h(p)=r-p

20 /26

RP: Inner product test
Single test:
@ Choose random subset of positions of size 2,

@ Randomly assign 0 or 1 to every of them, the rest
assign to 0, call the resulting vector r

o h(p)=r-p
Claim: there exist constants d; > 0o

® Hy(p,s) <! = Prlh(p) = h(q)] = 01
e Hy(p,s) > (1+¢)l = Prlh(p) = h(q)] < 02

20 /26

RP: Preprocessing
Inner product mapping:

@ Choose k random tests ry, ..., ry

@ Map every p into A(p) = h,(p)...h, (p)

21/26

RP: Preprocessing
Inner product mapping:

@ Choose k random tests ry, ..., ry

@ Map every p into A(p) = h,(p)...h, (p)

Data Structure

@ Apply inner product mapping to all strings in
database

e For every v € {0, 1} precompute all
(%)k—neighbors

21/26

RP: Search

e Compute A(q) = h,(q)...h,(q)

@ Retrieve and explicitly check all (%5
of A(q)

01+)

k-neighbors

22/26

RP: Search

e Compute A(q) = h,(q)...h,(q)

o Retrieve and explicitly check all (2:5%)

of A(q)

k-neighbors

Analysis:

@ Chances to miss true /-neighbor: exp(—élz;(sl‘kk)

@ Chances to waste time on (1 + ¢)/-far neighbor:
exp(—2452k)

RP: Search

o Compute A(q) = h,(q).. . hr(q)
@ Retrieve and explicitly check all (§1+52)k neighbors
of A(q)
Analysis:

@ Chances to miss true /-neighbor: exp(—‘slz;dl‘kk)

@ Chances to waste time on (1 + ¢)/-far neighbor:
exp(—2452k)

Thus we should take near-logarithmic k which lead to
polynomial size of {0,1}* to be NN-precomputed

RP: Formal Claim

Theorem (Kushilevetz, Ostrovsky, Rabani, 1998)

Consider (1 + ¢)-approximate |-range search in
d-dimensional Hamming cube. Then for every | there is
a randomized algorithm with (roughly) d?polylog(d, n)
query time and nOE"?) preprocessing space. For every
query this algorithm answers correctly with probability at
least 1 — 1

23 /26

Exercise

Prove that 2°(Y) number of randomly chosen (w, 4w)
ball grids is enough to cover t-dimensional space with
probability 1/2

24 /26

Highlights

@ Locality-sensitive hashing: use random projection for
defining a candidate list, check its members
explicitly

25 /26

Highlights

@ Locality-sensitive hashing: use random projection for
defining a candidate list, check its members

explicitly

@ Random projections: low-distortion embedding into
finite sets + fully precomputed nearest neighbors

25 /26

Highlights

@ Locality-sensitive hashing: use random projection for
defining a candidate list, check its members

explicitly

@ Random projections: low-distortion embedding into
finite sets + fully precomputed nearest neighbors

Thanks for your attention! Questions?

25 /26

References

Course homepage http://simsearch.yury.name/tutorial.html

2

B

Y. Lifshits
The Homepage of Nearest Neighbors and Similarity Search
http://simsearch.yury.name

A. Andoni, P. Indyk

Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions. FOCS'06
http://web.mit.edu/andoni/www/papers/cSquared.pdf

E. Kushilevitz, R. Ostrovsky, Y. Rabani
Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. sTOC98
http://www.cs.technion.ac.il/"rabani/pss/Publications/KushilevitzOR98.ps.gz

26 /26

http://simsearch.yury.name/tutorial.html
http://simsearch.yury.name
http://web.mit.edu/andoni/www/papers/cSquared.pdf
http://www.cs.technion.ac.il/~rabani/pss/Publications/KushilevitzOR98.ps.gz

	Locality-Sensitive Hashing (LSH)
	General Scheme
	Ball Grids Hashing

	Random Projections

