Restrictions on Input

Algorithms for Nearest Neighbor Search: Lecture 4

Yury Lifshits http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

1/35

Outline

1 Nearest Neighbors in Small Doubling Dimension

- Disorder Method: A Combinatorial Solution of Nearest Neighbors
- 3 Probabilistic Analysis: Zipf Model
- Open Problems

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly \log(n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

- Define intrinsic dimension of search domain and assume it is small (usually constant or O(log log n))
- Fix some probability distribution over inputs and queries. Find an algorithm which is fast with high probability over inputs/query

2 / 35

Chapter XI

Nearest Neighbors in Small Doubling Dimension

Mini-plan:

Notion of doubling dimension Solving 3-approximate nearest neighbors From 3-approximation to $(1 + \varepsilon)$ -approximation

Notion of Doubling Dimension

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant $\dim(\mathbb{U}) = \log \lambda$

Exercise: Prove that for Euclidean space $\dim(\mathbb{R}^d) = \mathcal{O}(d)$

Exercise: Prove that $\forall S \subset \mathbb{U}$: dim $(S) \leq 2$ dim (\mathbb{U})

5 / 35

Cover Lemma: Proof

Greedy algorithm:

- Start from empty T
- Solution Find some object in *S* which is still δr -far from all objects in *T*, add it to *T*
- **③** Stop when all objects in *S* are within δr from some point in *T*

Upper bound on size:

- Apply definition of doubling constant to B(p, r) recursively until getting $\frac{\delta r}{3}$ -cover
- This cover has size $(\frac{1}{\delta})^{\mathcal{O}(\dim(\mathbb{U}))}$
- Every element of this cover can contain at most one object from *T*

Doubling Dimension and *r*-Nets

Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff (1) $\forall p, p' \in T : d(p, p') > r$ (2) $\forall s \in S \exists p \in T : d(s, p) < r$

6 / 35

Ring-Separator Lemma

For every *S* there is ring-separator with $\delta \geq (\frac{1}{2})^{\mathcal{O}(\dim(S))}$

Ring-Separator Lemma: Proof

- Fix $\delta = (\frac{1}{2})^{\operatorname{cdim}(S)}$ for some large c
- For every p choose the maximal r_p such that $|B(p, r_p)| < \delta |S|$
- Let p_0 be the one having minimal r_{p_0}
- If none of triples (p, r_p, 2r_p) is δ ring-separator build an r_{p0}-net for B(p₀, 2r_{p0}):
 - Start from r_0 , and set $A := B(p_0, 2r_{p_0})/B(p_0, r_{p_0})$
 - Iteratively add some point *p* from *A* to net, update
 A := *A*/*B*(*p*, *r*)
- Since A decreased by at most 2δ|S| points each time there must be many points in cover. Since it is r_{p0}-net for B(p₀, 2r_{p0}) there must be few points. Contradiction

9 / 35

3-NN via Ring-Separator Tree

Notation: p_1, \ldots, p_k are the centers of visited rings

- If $p_{NN}(q) = p_k$ we are done
- If not, let us consider *p_i* where we miss the right branch. There are two cases:

• Anyway, p_i at most 3 time worse than $p_{NN}(q)$

Ring-Separator Tree

Preprocessing:

- Find $(\frac{1}{2})^{\mathcal{O}(\dim(S))}$ ring-separator (p, r, 2r) for S
- 2 Put objects from B(p, 2r) to inner branch
- **9** Put objects from S/B(p, r) to outer branch
- Recursively repeat

Search:

- For every node (p, r, 2r): if $d(q, p) \le 3r/2$ go only to inner branch otherwise go only to outer branch
- 2 Return the best object considered in search

10/35

Krauthgamer&Lee'05

From 3-NN to r-NN: Reduction Algorithm

- Find 3-approximate nearest neighbor p for q
- 2 Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- **③** Return an object in cover that is the closest to q

From 3-NN to r-NN: Net Construction

Preprocessing:

- For every *i* build 2^{*i*}-net for *S* (every lower level contains all points from the higher level)
- Compute children pointers: from every element p of 2^{i} -net to all balls of 2^{i-1} -net required to cover $B(p, 2^{i})$
- Sompute brother pointers: from every element p of 2^{i} -net to all elements p' from 2^{i} -net needed for covering $B(p, 2^{i})$
- Occupied Compute parent pointers: from every element p of 2^{i-1} -net to the element p' from 2^{i} -net within 2^{i} from it

On-line net construction:

- Go up by parent pointers until meeting ball big enough
- Ose brother pointer
- **③** Go by children pointers until getting cover small enough

13/35

Chapter XII

Disorder Method: A Combinatorial Solution of Nearest Neighbors

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain U has r-net of size at most (1/r)^{d+o(1)}
- Karger-Ruhl dimension of database S ⊂ U is the minimal d that for every p ∈ S and every r the following inequality holds: |B(p,2r) ∩ S| ≤ 2^d|B(p,r) ∩ S|
- Measure-based dimensions
- Disorder dimension (see next chapter)

Exercise: prove that
$$\forall S \subset \mathbb{U}$$
: dim_{Doub} $(S) \leq 4$ dim_{KR} (S)

14/35

Concept of Disorder

Sort all objects in database *S* by their similarity to *p* Let $\operatorname{rank}_p(s)$ be position of object *s* in this list

Disorder inequality for some constant *D*:

 $\forall p, r, s \in \{q\} \cup S:$ rank_r(s) $\leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$

Minimal *D* providing disorder inequality is called **disorder constant** of a given set

For "regular" sets in *d*-dimensional Euclidean space $D \approx 2^{d-1}$

Ranwalk Informally (1/2)

Ranwalk Algorithm

Preprocessing:

• For every point *p* in database we sort all other points by their similarity to *p*

Data structure: *n* lists of n - 1 points each.

Query processing:

- From k = 1 to k = log n do Step k: Choose D' := 3D(log log n + 1) random points from min(n, 3Dn/2^k)-neighborhood of p_{k-1}. Compute similarities of these points w.r.t. q and set p_k to be the most similar one.
- If $\operatorname{rank}_{p_{\log n}}(q) > D$ go to step 0, otherwise search the whole D^2 -neighborhood of $p_{\log n}$ and return the point most similar to q as the final answer.

Ranwalk Informally (2/2)

Hierarchical greedy navigation:

- Start at random city p1
- Among all airlines choose the one going most closely to q, move there (say, to p₂)
- Among all railway routes from p₂ choose the one going most closely to q, move there (p₃)
- Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
- **(**) Repeat this $\log n$ times and return the final city

Transport system: for level *k* choose *c* random arcs to $\frac{n}{2^k}$ neighborhood

18/35

Analysis of Ranwalk

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

 $rank_x(y) \leq D(rank_z(x) + rank_z(y)).$

Then Ranwalk algorithm always answers nearest neighbor queries correctly. It uses the following resources: Preprocessing space: $O(n^2)$. Preprocessing time: $O(n^2 \log n)$. Expected query time: $O(D \log n \log \log n + D^2)$.

Arwalk Algorithm

Preprocessing:

• For every point *p* in database we sort all other points by their similarity to *p*. For every *level number k* from 1 to log *n* we store pointers to $D' = 3D(\log \log n + \log 1/\delta)$ random points within $\min(n, \frac{3Dn}{2k})$ most similar to *p* points.

Query processing:

- **(**) Step 0: choose a random point p_0 in the database.
- From k = 1 to k = log n do Step k: go by p_{k-1} pointers of level k. Compute similarities of these D' points to q and set p_k to be the most similar one.
- 3 Return $p_{\log n}$.

21 / 35

Chapter XIII

Probabilistic Analysis: Zipf Model

Analysis of Algorithm

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

 $rank_x(y) \leq D(rank_z(x) + rank_z(y)).$

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:

Preprocessing space: $\mathcal{O}(nD \log n(\log \log n + \log 1/\delta))$. Preprocessing time: $\mathcal{O}(n^2 \log n)$. Query time: $\mathcal{O}(D \log n(\log \log n + \log 1/\delta))$.

22 / 35

Probabilistic Analysis in a Nutshell

- We define a probability distribution over databases
- We define probability distribution over query objects
- We construct a solution that is efficient/accurate with high probability over "random" input/query

Zipf Model

- Terms t_1, \ldots, t_m
- To generate a document we take every t_i with probability ¹/_i
- Database is *n* independently chosen documents
- Query document has exactly one term in every interval [eⁱ, eⁱ⁺¹]
- Similarity between documents is defined as the number of common terms

25 / 35

Chapter XIV

Future of Nearest Neighbors

Magic Level Theorem

Magic Level $q = \sqrt{2 \log_e n}$

Theorem (Hoffmann, YL, Nowotka. CSR'07)

- With very high probability there exists a document in database having $q - \varepsilon$ top terms of query document
- So With very small probability there exists a document in database having any $q + \varepsilon$ overlap with query document

26 / 35

Directions for Further Research (1/2)

- Relational nearest neighbors: using graph structure of underlying domain. Examples: co-occurrence similarity, recommendations via social network
- Nearest neighbors for sparse vectors in Euclidean space
- Low-distortion embeddings for social networks, similarity visualization
- Construct algorithms for learning similarity function

Directions for Further Research (2/2)

- Probabilistic analysis for specific domains: introduce reasonable input distributions and solve nearest neighbors for them
- Disorder method / Intrinsic dimension: fast algorithm for bounded average dimension
- Branch and bound techniques for bichromatic nearest neighbors
- New dynamic aspects: object descriptions are changing in time

OP1: NN for Sparse Vectors

Database: *n* vectors in \mathbb{R}^m each having at most $k \ll m$ nonzero coordinates

Query: vector in \mathbb{R}^m also having at most $k \ll m$ nonzero coordinates

Similarity: scalar product

Construct an algorithm for solving nearest neighbors on sparse vectors **Constraints:** *poly*(*n*, *m*) preprocessing, *poly*(*k*, log *n*) query

30 / 35

OP2: 3-Step NN

3-step similarity between boy and girl in some bipartite boys-girls graph is equal to number of paths of length 3 between them

Construct an algorithm for solving nearest neighbors in bipartite graphs with 3-step similarity Constraints: poly(n, m) preprocessing, $poly(k, \log n, \log m)$ query

Exercises

Prove that $\mathsf{dim}_{\mathsf{Doub}}(\mathbb{R}^d) = \mathcal{O}(d)$

Prove that $\forall S \subset \mathbb{U}$: $\dim_{\mathsf{Doub}}(S) \leq 2\dim_{\mathsf{Doub}}(\mathbb{U})$

Prove that $\forall S \subset \mathbb{U}$: $\dim_{\text{Doub}}(S) \leq 4\dim_{\text{KR}}(S)$

29 / 35

Highlights

- Doubling dimension: restriction on size of *r*-covers. Solution: ring-separator tree
- Disorder inequality: replacement of triangle inequality using rank values instead of actual similarity values
- Probabilistic analysis: Efficient algorithm for texts generated by Zipf model

Thanks for your attention! Questions?

33 / 35

References (2/2)

R. Krauthgamer and J.R. Lee The black-box complexity of nearest-neighbor search Theoretical Computer Science, 2005 http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf

R. Krauthgamer and J.R. Lee

Navigating nets: simple algorithms for proximity search SODA'04 http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA04.pdf

K.L. Clarkson

Nearest-Neighbor Searching and Metric Space Dimensions In Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, 2006 http://www.cs.bell-labs.com/who/clarkson/nn_survey/p.pdf

References (1/2)

Course homepage

9

http://simsearch.yury.name/tutorial.html

Y. Lifshits The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name

- N. Goyal, Y. Lifshits, H. Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbors Submitted http://yury.name/papers/goyal2008disorder.pdf
 - B. Hoffmann, Y. Lifshits, D. Nowotka Maximal Intersection Queries in Randomized Graph Models CSR'07 http://yury.name/papers/hoffmann2007maximal.pdf

34 / 35