Restrictions on Input

Algorithms for Nearest Neighbor Search: Lecture 4

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

Making Nearest Neighbors Easier

Tractable solution: poly (n) preprocessing, poly $\log (n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

- Define intrinsic dimension of search domain and assume it is small (usually constant or $\mathcal{O}(\log \log n)$)
- Fix some probability distribution over inputs and queries. Find an algorithm which is fast with high probability over inputs/query

Chapter XI

Nearest Neighbors in Small Doubling Dimension

Mini-plan:

Notion of doubling dimension
Solving 3-approximate nearest neighbors
From 3-approximation to $(1+\varepsilon)$-approximation

Notion of Doubling Dimension

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball $B(p, 2 r)$ has cover of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant $\operatorname{dim}(\mathbb{U})=\log \lambda$

Exercise: Prove that for Euclidean space $\operatorname{dim}\left(\mathbb{R}^{d}\right)=\mathcal{O}(d)$

```
Exercise: Prove that }\forallS\subset\mathbb{U}:\quad\operatorname{dim}(S)\leq2\operatorname{dim}(\mathbb{U}
```


Cover Lemma: Proof

Greedy algorithm:

(1) Start from empty T
(2) Find some object in S which is still δr-far from all objects in T, add it to T
(3) Stop when all objects in S are within δr from some point in T

Upper bound on size:

- Apply definition of doubling constant to $B(p, r)$ recursively until getting $\frac{\delta r}{3}$-cover
- This cover has size $\left(\frac{1}{\delta}\right)^{\mathcal{O}(\operatorname{dim}(\mathbb{U}))}$
- Every element of this cover can contain at most one object from T

Doubling Dimension and r-Nets

Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff
(1) $\forall p, p^{\prime} \in T: d\left(p, p^{\prime}\right)>r$
(2) $\forall s \in S \quad \exists p \in T: d(s, p)<r$

Lemma (Cover Lemma)

Every ball $B(p, r)$ has δr-net of cardinality at $\operatorname{most}\left(\frac{1}{\delta}\right)^{\mathcal{O}(\operatorname{dim}(\mathbb{U}))}$

Ring-Separator Lemma

Triple $(p, r, 2 r)$ is δ-ring-separator for S iff
(1) $|S \cap B(p, r)| \geq \delta|S|$
(2) $|S / B(p, 2 r)| \geq \delta|S|$

Lemma (Ring-Separator Lemma)

For every S there is ring-separator with $\delta \geq\left(\frac{1}{2}\right)^{\mathcal{O}(\operatorname{dim}(S))}$

Ring-Separator Lemma: Proof

- Fix $\delta=\left(\frac{1}{2}\right)^{\text {cdim }(S)}$ for some large c
- For every p choose the maximal r_{p} such that $\left|B\left(p, r_{p}\right)\right|<\delta|S|$
- Let p_{0} be the one having minimal $r_{p_{0}}$
- If none of triples $\left(p, r_{p}, 2 r_{p}\right)$ is δ ring-separator build an $r_{p_{0}}$-net for $B\left(p_{0}, 2 r_{p_{0}}\right)$:
- Start from r_{0}, and set $A:=B\left(p_{0}, 2 r_{p_{0}}\right) / B\left(p_{0}, r_{p_{0}}\right)$
- Iteratively add some point p from A to net, update $A:=A / B(p, r)$
- Since A decreased by at most $2 \delta|S|$ points each time there must be many points in cover. Since it is $r_{p_{0}}$-net for $B\left(p_{0}, 2 r_{p_{0}}\right)$ there must be few points. Contradiction

3-NN via Ring-Separator Tree

Notation: p_{1}, \ldots, p_{k} are the centers of visited rings

- If $p_{N N}(q)=p_{k}$ we are done
- If not, let us consider p_{i} where we miss the right branch. There are two cases:

- Anyway, p_{i} at most 3 time worse than $p_{N N}(q)$

Ring-Separator Tree

Preprocessing:

(1) Find $\left(\frac{1}{2}\right)^{\mathcal{O}(\operatorname{dim}(S))}$ ring-separator $(p, r, 2 r)$ for S
(2) Put objects from $B(p, 2 r)$ to inner branch
(3) Put objects from $S / B(p, r)$ to outer branch
(a) Recursively repeat

Search:

(1) For every node $(p, r, 2 r)$: if $d(q, p) \leq 3 r / 2$ go only to inner branch otherwise go only to outer branch
(2) Return the best object considered in search

Return the best object considered in search

From 3-NN to r-NN: Reduction Algorithm

(1) Find 3-approximate nearest neighbor p for q
(2) Quickly build a $\varepsilon \frac{d(p, q)}{3}$ cover for $B\left(p, 4 \frac{d(p, q)}{3}\right)$. See the next slide
(3) Return an object in cover that is the closest to q

From 3-NN to r-NN: Net Construction

Preprocessing:

(1) For every i build 2^{i}-net for S (every lower level contains all points from the higher level)
(2) Compute children pointers: from every element p of 2^{i}-net to all balls of 2^{i-1}-net required to cover $B\left(p, 2^{i}\right)$
(3) Compute brother pointers: from every element p of 2^{i}-net to all elements p^{\prime} from 2^{i}-net needed for covering $B\left(p, 2^{i}\right)$
(4) Compute parent pointers: from every element p of 2^{i-1}-net to the element p^{\prime} from 2^{i}-net within 2^{i} from it
On-line net construction:
(1) Go up by parent pointers until meeting ball big enough
(2) Use brother pointer

3 Go by children pointers until getting cover small enough

Chapter XII

Disorder Method:

A Combinatorial Solution of Nearest Neighbors

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain \mathbb{U} has r-net of size at most $(1 / r)^{d+o(1)}$
- Karger-Ruhl dimension of database $S \subset \mathbb{U}$ is the minimal d that for every $p \in S$ and every r the following inequality holds:

$$
|B(p, 2 r) \cap S| \leq 2^{d}|B(p, r) \cap S|
$$

- Measure-based dimensions
- Disorder dimension (see next chapter)

Exercise: prove that $\forall S \subset \mathbb{U}: \quad \operatorname{dim}_{\text {Doub }}(S) \leq 4 \operatorname{dim}_{\text {KR }}(S)$

Concept of Disorder

Sort all objects in database S by their similarity to p Let rank $_{p}(s)$ be position of object s in this list

Disorder inequality for some constant D :
$\forall p, r, s \in\{q\} \cup S: \quad \operatorname{rank}_{r}(s) \leq D \cdot\left(\operatorname{rank}_{p}(r)+\operatorname{rank}_{p}(s)\right)$

Minimal D providing disorder inequality is called disorder constant of a given set

For "regular" sets in d-dimensional Euclidean space $D \approx 2^{d-1}$

Ranwalk Informally (1/2)

Ranwalk Algorithm

Preprocessing:

- For every point p in database we sort all other points by their similarity to p
Data structure: n lists of $n-1$ points each.

Query processing:

(1) Step 0: choose a random point p_{0} in the database.
(2) From $k=1$ to $k=\log n$ do Step k : Choose $D^{\prime}:=3 D(\log \log n+1)$ random points from $\min \left(n, \frac{3 D n}{2^{k}}\right)$-neighborhood of p_{k-1}. Compute similarities of these points w.r.t. q and set p_{k} to be the most similar one.
(3) If $\operatorname{rank}_{\operatorname{pog}_{n}}(q)>D$ go to step 0 , otherwise search the whole D^{2}-neighborhood of $p_{\log n}$ and return the point most similar to q as the final answer.

Ranwalk Informally (2/2)

Hierarchical greedy navigation:

(1) Start at random city p_{1}
(2) Among all airlines choose the one going most closely to q, move there (say, to p_{2})
(3) Among all railway routes from p_{2} choose the one going most closely to q, move there (p_{3})
(9) Among all bus routes from p_{3} choose the one going most closely to q, move there (p_{4})
(5) Repeat this $\log n$ times and return the final city

Transport system: for level k choose c random arcs to $\frac{n}{2^{k}}$ neighborhood

Analysis of Ranwalk

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point $S \cup\{q\}$ satisfy disorder inequality with constant D :

$$
\operatorname{rank}_{x}(y) \leq D\left(\operatorname{rank}_{z}(x)+\operatorname{rank}_{z}(y)\right)
$$

Then Ranwalk algorithm always answers nearest neighbor queries correctly. It uses the following resources:
Preprocessing space: $\mathcal{O}\left(n^{2}\right)$.
Preprocessing time: $\mathcal{O}\left(n^{2} \log n\right)$.
Expected query time: $\mathcal{O}\left(D \log n \log \log n+D^{2}\right)$.

Arwalk Algorithm

Preprocessing:

- For every point p in database we sort all other points by their similarity to p. For every level number k from 1 to $\log n$ we store pointers to $D^{\prime}=3 D(\log \log n+\log 1 / \delta)$ random points within $\min \left(n, \frac{3 D n}{2^{k}}\right)$ most similar to p points.

Query processing:

(1) Step 0 : choose a random point p_{0} in the database.
(2) From $k=1$ to $k=\log n$ do Step k : go by p_{k-1} pointers of level k. Compute similarities of these D^{\prime} points to q and set p_{k} to be the most similar one.
(3) Return $p_{\log n}$.

Chapter XIII

Probabilistic Analysis: Zipf Model

Analysis of Algorithm

Theorem (Goyal, YL, Schütze. 2007)
Assume that database points together with query point $S \cup\{q\}$ satisfy disorder inequality with constant D :

$$
\operatorname{rank}_{x}(y) \leq D\left(\operatorname{rank}_{z}(x)+\operatorname{rank}_{z}(y)\right)
$$

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:
Preprocessing space: $\mathcal{O}(n D \log n(\log \log n+\log 1 / \delta))$. Preprocessing time: $\mathcal{O}\left(n^{2} \log n\right)$.
Query time: $\mathcal{O}(D \log n(\log \log n+\log 1 / \delta))$.

Probabilistic Analysis in a Nutshell

- We define a probability distribution over databases
- We define probability distribution over query objects
- We construct a solution that is efficient/accurate with high probability over "random" input/query

Zipf Model

- Terms t_{1}, \ldots, t_{m}
- To generate a document we take every t_{i} with probability $\frac{1}{i}$
- Database is n independently chosen documents
- Query document has exactly one term in every interval $\left[e^{i}, e^{i+1}\right]$
- Similarity between documents is defined as the number of common terms

Magic Level Theorem

Magic Level $q=\sqrt{2 \log _{e} n}$
Theorem (Hoffmann, YL, Nowotka. CSR'07)
(1) With very high probability there exists a document in database having $q-\varepsilon$ top terms of query document
(2) With very small probability there exists a document in database having any $q+\varepsilon$ overlap with query document

Directions for Further Research (1/2)

- Relational nearest neighbors: using graph structure of underlying domain. Examples: co-occurrence similarity, recommendations via social network
- Nearest neighbors for sparse vectors in Euclidean space
- Low-distortion embeddings for social networks, similarity visualization
- Construct algorithms for learning similarity function

Directions for Further Research (2/2)

- Probabilistic analysis for specific domains: introduce reasonable input distributions and solve nearest neighbors for them
- Disorder method / Intrinsic dimension: fast algorithm for bounded average dimension
- Branch and bound techniques for bichromatic nearest neighbors
- New dynamic aspects: object descriptions are changing in time

OP2: 3-Step NN

3-step similarity between boy and girl in some bipartite boys-girls graph is equal to number of paths of length 3 between them
n boys
boy degrees $\leq k$
m girls

Construct an algorithm for solving nearest neighbors in bipartite graphs with 3-step similarity
Constraints: poly (n, m) preprocessing, poly $(k, \log n, \log m)$ query

OP1: NN for Sparse Vectors

Database: n vectors in \mathbb{R}^{m} each having at most $k \ll m$ nonzero coordinates
Query: vector in \mathbb{R}^{m} also having at most $k \ll m$ nonzero coordinates

Similarity: scalar product

Construct an algorithm for solving nearest neighbors on sparse vectors

Constraints: poly (n, m) preprocessing, poly $(k, \log n)$ query

Exercises

$$
\text { Prove that } \operatorname{dim}_{\text {Doub }}\left(\mathbb{R}^{d}\right)=\mathcal{O}(d)
$$

Prove that $\forall S \subset \mathbb{U}: \quad \operatorname{dim}_{\text {Doub }}(S) \leq 2 \operatorname{dim}_{\text {Doub }}(\mathbb{U})$

Prove that $\forall S \subset \mathbb{U}: \quad \operatorname{dim}_{\text {Doub }}(S) \leq 4 \operatorname{dim}_{\text {KR }}(S)$

Highlights

- Doubling dimension: restriction on size of r-covers. Solution: ring-separator tree
- Disorder inequality: replacement of triangle inequality using rank values instead of actual similarity values
- Probabilistic analysis: Efficient algorithm for texts generated by Zipf model

Thanks for your attention! Questions?

References (1/2)

Course homepage http://simsearch.yury.name/tutorial.html
(3) Y. Lifshits

The Homepage of Nearest Neighbors and Similarity Search
http://simsearch.yury.name
N. Goyal, Y. Lifshits, H. Schütze

Disorder Inequality: A Combinatorial Approach to Nearest Neighbors Submitted http://yury.name/papers/goyal2008disorder.pdf
B. Hoffmann, Y. Lifshits, D. Nowotka

Maximal Intersection Queries in Randomized Graph Models CSR'07 http://yury.name/papers/hoffmann2007maximal.pdf

References (2/2)

國 R. Krauthgamer and J.R. Lee
The black-box complexity of nearest-neighbor search Theoretical Computer Science, 2005 http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf
R. Krauthgamer and J.R. Lee

Navigating nets: simple algorithms for proximity search SODA'04
http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA04.pdf
K.L. Clarkson

Nearest-Neighbor Searching and Metric Space Dimensions
In Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, 2006
http://www.cs.bell-labs.com/who/clarkson/nn_survey/p.pdf

