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@ Nearest Neighbors in Small Doubling Dimension

© Disorder Method: A Combinatorial Solution of
Nearest Neighbors

© Probabilistic Analysis: Zipf Model

@ Open Problems

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, poly log(n) search time
General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

@ Define intrinsic dimension of search domain and
assume it is small (usually constant or O(loglog n))

@ Fix some probability distribution over inputs and
queries. Find an algorithm which is fast with high
probability over inputs/query

Chapter XI

Nearest Neighbors in Small
Doubling Dimension

Mini-plan:
Notion of doubling dimension
Solving 3-approximate nearest neighbors
From 3-approximation to (1 + ¢)-approximation
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Notion of Doubling Dimension

Doubling constant )\ for search
domain U: minimal value such
that for every r and every object
p € U the ball B(p,2r) has cover
of at most \ balls of radius r

Doubling dimension: logarithm of doubling constant
dim(U) = log A

Exercise: Prove that for Euclidean space dim(R9) = O(d)

Exercise: Prove that VS C U: dim(S) < 2dim(U)

Cover Lemma: Proof
Greedy algorithm:
@ Start from empty T

© Find some object in S which is still dr-far from all objects in
T,add itto T

© Stop when all objects in S are within r from some point in T

Upper bound on size:

@ Apply definition of doubling constant to B(p, r) recursively
until getting %-cover

@ This cover has size (%)O(d‘m(U))

@ Every element of this cover can contain at most one object
from T

Doubling Dimension and r-Nets

Set T C Uis an r-net for S C U iff

(1) Vp,p € T: d(p,p') >r
(2)VseS dpe T: d(s,p)<r

Lemma (Cover Lemma)

Every ball B(p, r) has dr-net of cardinality at

most (%)O(dim(tu))

Ring-Separator Lemma

Triple (p, r,2r) is
)-ring-separator
for S iff

<(1-29)5]

> 4|S]|

Q@ [SNB(p,r)| =4S
Q |5/B(p,2r)| = 4]$|

Lemma (Ring-Separator Lemma)

For every S there is ring-separator with ¢ > (%)°(dm(S))




Ring-Separator Lemma: Proof

Fix § = (3)4m(®) for some large c
For every p choose the maximal r, such that |B(p, r,)| < 0|S|

Let py be the one having minimal r,,

If none of triples (p. r,,2r,) is § ring-separator build an r,-net
for B(po, 2y, ):

e Start from ry, and set A := B(po, 2ry,)/B(po, rp)

@ lteratively add some point p from A to net, update
A:= A/B(p.r)

@ Since A decreased by at most 2J|S| points each time there

must be many points in cover. Since it is ry-net for
B(po, 2r,,) there must be few points. Contradiction

3-NN via Ring-Separator Tree
Notation: p, ..., px are the centers of visited rings
o If pyn(g) = px we are done

@ If not, let us consider p; where we miss the right
branch. There are two cases:

@ Anyway, p; at most 3 time worse than pyy(q)
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Ring-Separator Tree

. Krauthgamer&Lee'05
Preprocessing:

@ Find (2)9Em) ring-separator (p, r, 2r)
for S

@ Put objects from B(p,2r) to inner branch
© Put objects from S/B(p, r) to outer branch

© Recursively repeat

Search:

@ For every node (p, r,2r): if d(q, p) < 3r/2 go only to inner
branch otherwise go only to outer branch

© Return the best object considered in search
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From 3-NN to r-NN: Reduction Algorithm

@ Find 3-approximate nearest neighbor p for g

@ Quickly build a 5@ cover for B(p, 4@). See
the next slide

© Return an object in cover that is the closest to g
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From 3-NN to r-NN: Net Construction

Preprocessing:

@ For every i build 2'-net for S (every lower level contains all
points from the higher level)

© Compute children pointers: from every element p of 2/-net to
all balls of 2'~1-net required to cover B(p,2)

© Compute brother pointers: from every element p of 2/-net to
all elements p’ from 2'-net needed for covering B(p,2')

@ Compute parent pointers: from every element p of 2/ ~!-net to
the element p’ from 2'-net within 2’ from it

On-line net construction:
© Go up by parent pointers until meeting ball big enough

@ Use brother pointer

© Go by children pointers until getting cover small enough o

Chapter XII

Disorder Method:

A Combinatorial Solution of
Nearest Neighbors
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Other Definitions of Intrinsic Dimension

@ Box dimension is the minimal d that for every r our
domain U has r-net of size at most (1/r)9o()

@ Karger-Ruhl dimension of database S C U is the
minimal d that for every p € S and every r the
following inequality holds:

|B(p,2r) N S| <29 B(p,r)N S|
@ Measure-based dimensions

@ Disorder dimension (see next chapter)

Exercise: prove that
VS CU: dimpen(S) < 4dimggr(S)
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Concept of Disorder

Sort all objects in database S by their similarity to p
Let rank,(s) be position of object s in this list

Disorder inequality for some constant D:

Vp,r,s € {q}US : rank,(s) < D-(rank,(r)+rank,(s))

Minimal D providing disorder inequality is called
disorder constant of a given set

For “regular” sets in d-dimensional Euclidean space D ~ 297!

16 /35



Ranwalk Informally (1/2)

Sooa
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Ranwalk Algorithm

Preprocessing:
@ For every point p in database we sort all other points by their
similarity to p
Data structure: n lists of n — 1 points each.

Query processing:
@ Step 0: choose a random point py in the database.

© From k =1 to k = logn do Step k: Choose
D’ :=3D(loglog n+ 1) random points from
3Dn

min(n, 7" )-neighborhood of p,_;. Compute similarities of

these points w.r.t. g and set p, to be the most similar one.

@ If rank,,,.(g) > D go to step 0, otherwise search the whole
D?-neighborhood of pj,e, and return the point most similar to
g as the final answer.
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Ranwalk Informally (2/2)

Hierarchical greedy navigation:
@ Start at random city p;

© Among all airlines choose the one going most closely to g,
move there (say, to p,)

© Among all railway routes from p, choose the one going most
closely to g, move there (ps3)

© Among all bus routes from p3 choose the one going most
closely to g, move there (p;)

© Repeat this log n times and return the final city

Transport system: for level k choose ¢ random arcs to
ok neighborhood
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Analysis of Ranwalk

Theorem (Goyal, YL, Schiitze. 2007)

Assume that database points together with query point
S U{q} satisfy disorder inequality with constant D:

rank,(y) < D(rank,(x) + rank,(y)).

Then Ranwalk algorithm always answers nearest neighbor
queries correctly. It uses the following resources:
Preprocessing space: O(n?).

Preprocessing time: O(n? log n).

Expected query time: O(D log nloglog n + D?).
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Arwalk Algorithm Analysis of Algorithm

Preprocessing: Theorem (Goyal, YL, Schiitze. 2007)

@ For every point p in database we sort all other points by their Assume that database points together with query point
similarity to p. For every level number k from 1 to log n we satisfv disorder ineauality with constant D:
store pointers to D’ = 3D(loglog n + log 1/9) random points > U {CI} 4 ¢ v .
within min(n, 2£7) most similar to oints.

(n, 30m) pp rank,(y) < D(rank,(x) + rank.(y)).

Query processing:
Then for any probability of error 6 Arwalk algorithm

answers nearest neighbor query within the following
© From k =1 to k = logn do Step k: go by px_1 pointers of constraints:

level k. Compute similarities of these D" points to g and set Preprocessing space: O(nD log n(log log n + log 1/6))
to be the most simil . Lo '
Pl 1D D SIS ISSE SIS O Preprocessing time: O(n? log n).
@ Return piog - Query time: O(D log n(loglog n + log 1/9)).

@ Step 0: choose a random point py in the database.
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Probabilistic Analysis in a Nutshell

Chapter XM @ We define a probability distribution over databases

@ We define probability distribution over query objects

Probabilistic Analysis: Zipf Model

@ We construct a solution that is efficient/accurate
with high probability over “random” input/query
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Zipf Model Magic Level Theorem

@ Terms ty,.... ty Magic Level g = /2log, n
@ To generate a document we take every t; with Theorem (Hoffmann, YL, Nowotka. CSR'07)
probability %

Q@ With very high probability there exists a document

e Database is n independently chosen documents in database having q — ¢ top terms of query

document

@ Query document has exactly one term in every _ N _
interval [e/, e'"!] Q@ With very small probability there exists a document
in database having any q + € overlap with query

@ Similarity between documents is defined as the document

number of common terms
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Directions for Further Research (1/2)

@ Relational nearest neighbors: using graph structure

of underlying domain. Examples: co-occurrence
Chapter XIV e IS, B
similarity, recommendations via social network

@ Nearest neighbors for sparse vectors in Euclidean
space

Future of Nearest Neighbors

@ Low-distortion embeddings for social networks,
similarity visualization

@ Construct algorithms for learning similarity function
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Directions for Further Research (2/2) OP1: NN for Sparse Vectors

@ Probabilistic analysis for specific domains: introduce Database: n vectors in R™ each having at most k < m
reasonable input distributions and solve nearest nonzero coordinates
neighbors for them Query: vector in R™ also having at most kK < m

: C : nonzero coordinates
@ Disorder method / Intrinsic dimension: fast

algorithm for bounded average dimension Similarity: scalar product

@ Branch and bound techniques for bichromatic
nearest neighbors Construct an algorithm for solving

nearest neighbors on sparse vectors
@ New dynamic aspects: object descriptions are

A Constraints: poly(n, m) preprocessing, poly(k,log n) query
changing in time
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OP2: 3-Step NN Exercises

3-step similarity between boy and girl in some bipartite
boys-girls graph is equal to number of paths of length 3

between them
Prove that dimpeup(RY) = O(d)

v
n boys o) [ ) o [
boy degrees < k m / Prove that VS C U:  dimpeus(S) < 2dimpeys(U)
( (] (]
u

m girls
Prove that VS C U :  dimpeu(S) < 4dimggr(S)

Construct an algorithm for solving nearest neighbors in
bipartite graphs with 3-step similarity
Constraints: poly(n, m) preprocessing, poly(k,log n,log m) query
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Highlights References (1/2)

@ Doubling dimension: restriction on size of r-covers.

Solution: ring-separator tree Course homepage  http://simsearch.yury.name/tutorial.html
@ Disorder inequality: replacement of triangle B v Lifshits

. . o 0 The Homepage of Nearest Neighbors and Similarity Search

inequality using rank values instead of actual http://simsearch.yury.name

similarity values

5] N. Goyal, Y. Lifshits, H. Schiitze
. . L. ) Disorder Inequality: A Combinatorial Approach to Nearest Neighbors Submitted

@ Probabilistic analysis: Efficient algorithm for texts e ) N o e e

generated by Zipf model B B. Hoffmann, Y. Lifshits, D. Nowotka

Maximal Intersection Queries in Randomized Graph Models csRr'07
http://yury.name/papers/hoffmann2007maximal . pdf

Thanks for your attention! Questions?
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