Restrictions on Input

Algorithms for Nearest Neighbor Search: Lecture 4

Yury Lifshits

http://yury.name

Steklov Institute of Mathematics at St.Petersburg California Institute of Technology

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly\log(n)$ search time General case of nearest neighbors seems to be intractable

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly\log(n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Making Nearest Neighbors Easier

Tractable solution: poly(n) preprocessing, $poly\log(n)$ search time General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

- Define intrinsic dimension of search domain and assume it is small (usually constant or $\mathcal{O}(\log \log n)$)
- Fix some probability distribution over inputs and queries. Find an algorithm which is fast with high probability over inputs/query

Nearest Neighbors in Small Doubling Dimension

- Nearest Neighbors in Small Doubling Dimension
- Disorder Method: A Combinatorial Solution of Nearest Neighbors

- Nearest Neighbors in Small Doubling Dimension
- Disorder Method: A Combinatorial Solution of Nearest Neighbors
- Probabilistic Analysis: Zipf Model

- Nearest Neighbors in Small Doubling Dimension
- Disorder Method: A Combinatorial Solution of Nearest Neighbors
- Probabilistic Analysis: Zipf Model
- Open Problems

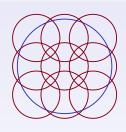
Chapter XI

Nearest Neighbors in Small Doubling Dimension

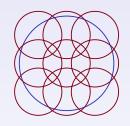
Mini-plan:

Notion of doubling dimension Solving 3-approximate nearest neighbors From 3-approximation to $(1+\varepsilon)$ -approximation

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r

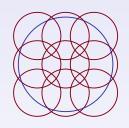


Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r



Doubling dimension: logarithm of doubling constant $dim(\mathbb{U}) = \log \lambda$

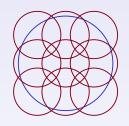
Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r



Doubling dimension: logarithm of doubling constant $dim(\mathbb{U}) = \log \lambda$

Exercise: Prove that for Euclidean space $\dim(\mathbb{R}^d) = \mathcal{O}(d)$

Doubling constant λ for search domain \mathbb{U} : minimal value such that for every r and every object $p \in \mathbb{U}$ the ball B(p, 2r) has cover of at most λ balls of radius r



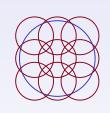
Doubling dimension: logarithm of doubling constant $\dim(\mathbb{U}) = \log \lambda$

Exercise: Prove that for Euclidean space $\dim(\mathbb{R}^d) = \mathcal{O}(d)$

Exercise: Prove that $\forall S \subset \mathbb{U}$: $\dim(S) \leq 2\dim(\mathbb{U})$

Doubling Dimension and r-Nets

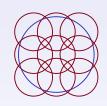
Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff (1) $\forall p, p' \in T : d(p, p') > r$ (2) $\forall s \in S \exists p \in T : d(s, p) < r$



Doubling Dimension and r-Nets

Set $T \subset \mathbb{U}$ is an r-net for $S \subset \mathbb{U}$ iff

- (1) $\forall p, p' \in T : d(p, p') > r$
- (2) $\forall s \in S \ \exists p \in T : \ d(s,p) < r$



Lemma (Cover Lemma)

Every ball B(p, r) has δr -net of cardinality at most $(\frac{1}{\delta})^{\mathcal{O}(\dim(\mathbb{U}))}$

Cover Lemma: Proof

Greedy algorithm:

- Start from empty T
- ② Find some object in S which is still δr -far from all objects in T, add it to T
- **3** Stop when all objects in S are within δr from some point in T

Cover Lemma: Proof

Greedy algorithm:

- Start from empty T
- ② Find some object in S which is still δr -far from all objects in T, add it to T
- **3** Stop when all objects in S are within δr from some point in T

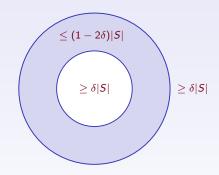
Upper bound on size:

- Apply definition of doubling constant to B(p, r) recursively until getting $\frac{\delta r}{3}$ -cover
- This cover has size $(\frac{1}{\delta})^{\mathcal{O}(\dim(\mathbb{U}))}$
- Every element of this cover can contain at most one object from T

Ring-Separator Lemma

Triple (p, r, 2r) is δ -ring-separator for S iff

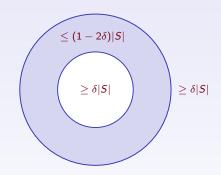
- $|S/B(p,2r)| \ge \delta |S|$



Ring-Separator Lemma

Triple (p, r, 2r) is δ -ring-separator for S iff

- $|S \cap B(p,r)| \ge \delta |S|$
- $|S/B(p,2r)| \ge \delta |S|$



Lemma (Ring-Separator Lemma)

For every S there is ring-separator with $\delta \geq (\frac{1}{2})^{\mathcal{O}(\dim(S))}$

Ring-Separator Lemma: Proof

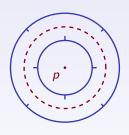
- Fix $\delta = (\frac{1}{2})^{\text{cdim}(S)}$ for some large c
- For every p choose the maximal r_p such that $|B(p, r_p)| < \delta |S|$
- Let p_0 be the one having minimal r_{p_0}
- If none of triples $(p, r_p, 2r_p)$ is δ ring-separator build an r_{p_0} -net for $B(p_0, 2r_{p_0})$:
 - Start from r_0 , and set $A := B(p_0, 2r_{p_0})/B(p_0, r_{p_0})$
 - Iteratively add some point p from A to net, update A := A/B(p, r)
- Since A decreased by at most $2\delta|S|$ points each time there must be many points in cover. Since it is r_{p_0} -net for $B(p_0, 2r_{p_0})$ there must be few points. Contradiction

Ring-Separator Tree

Krauthgamer&Lee'05

Preprocessing:

- Find $(\frac{1}{2})^{\mathcal{O}(\dim(S))}$ ring-separator (p, r, 2r) for S
- 2 Put objects from B(p, 2r) to inner branch
- Open Put objects from S/B(p, r) to outer branch
- Recursively repeat

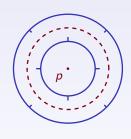


Ring-Separator Tree

Krauthgamer&Lee'05

Preprocessing:

- Find $(\frac{1}{2})^{\mathcal{O}(\dim(S))}$ ring-separator (p, r, 2r) for S
- 2 Put objects from B(p, 2r) to inner branch
- **1** Put objects from S/B(p, r) to outer branch
- Recursively repeat



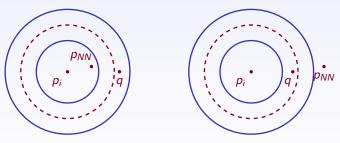
Search:

- For every node (p, r, 2r): if $d(q, p) \le 3r/2$ go only to inner branch otherwise go only to outer branch
- Return the best object considered in search

3-NN via Ring-Separator Tree

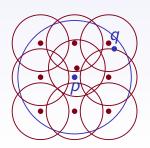
Notation: p_1, \ldots, p_k are the centers of visited rings

- If $p_{NN}(q) = p_k$ we are done
- If not, let us consider p_i where we miss the right branch. There are two cases:

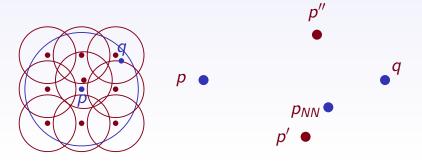


• Anyway, p_i at most 3 time worse than $p_{NN}(q)$

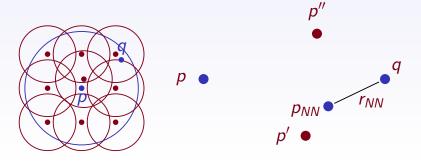
- Find 3-approximate nearest neighbor p for q
- ② Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p,4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q



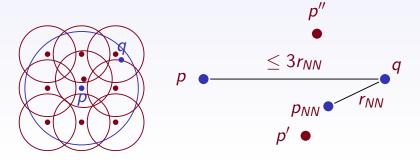
- Find 3-approximate nearest neighbor p for q
- 2 Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p,4\frac{d(p,q)}{3})$. See the next slide
- ullet Return an object in cover that is the closest to q



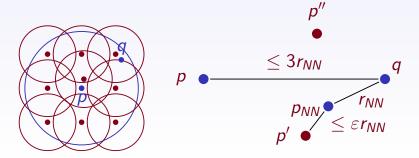
- Find 3-approximate nearest neighbor p for q
- 2 Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p,4\frac{d(p,q)}{3})$. See the next slide
- Return an object in cover that is the closest to q



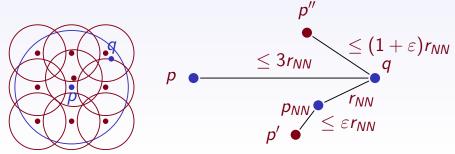
- Find 3-approximate nearest neighbor p for q
- ② Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p,4\frac{d(p,q)}{3})$. See the next slide
- \odot Return an object in cover that is the closest to q



- Find 3-approximate nearest neighbor p for q
- ② Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p, 4\frac{d(p,q)}{3})$. See the next slide
- ullet Return an object in cover that is the closest to q



- Find 3-approximate nearest neighbor p for q
- ② Quickly build a $\varepsilon \frac{d(p,q)}{3}$ cover for $B(p,4\frac{d(p,q)}{3})$. See the next slide
- ullet Return an object in cover that is the closest to q



From 3-NN to r-NN: Net Construction

Preprocessing:

- For every i build 2^i -net for S (every lower level contains all points from the higher level)
- ② Compute children pointers: from every element p of 2^i -net to all balls of 2^{i-1} -net required to cover $B(p, 2^i)$
- 3 Compute brother pointers: from every element p of 2^i -net to all elements p' from 2^i -net needed for covering $B(p, 2^i)$
- **Outpute** parent pointers: from every element p of 2^{i-1} -net to the element p' from 2^i -net within 2^i from it

From 3-NN to r-NN: Net Construction

Preprocessing:

- For every i build 2^i -net for S (every lower level contains all points from the higher level)
- ② Compute children pointers: from every element p of 2^i -net to all balls of 2^{i-1} -net required to cover $B(p, 2^i)$
- 3 Compute brother pointers: from every element p of 2^i -net to all elements p' from 2^i -net needed for covering $B(p, 2^i)$
- Ompute parent pointers: from every element p of 2^{i-1} -net to the element p' from 2^i -net within 2^i from it

On-line net construction:

- Go up by parent pointers until meeting ball big enough
- Use brother pointer
- Go by children pointers until getting cover small enough

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain \mathbb{U} has r-net of size at most $(1/r)^{d+o(1)}$
- Karger-Ruhl dimension of database $S \subset \mathbb{U}$ is the minimal d that for every $p \in S$ and every r the following inequality holds: $|B(p, 2r) \cap S| < 2^d |B(p, r) \cap S|$
- Measure-based dimensions
- Disorder dimension (see next chapter)

Other Definitions of Intrinsic Dimension

- Box dimension is the minimal d that for every r our domain \mathbb{U} has r-net of size at most $(1/r)^{d+o(1)}$
- Karger-Ruhl dimension of database $S \subset \mathbb{U}$ is the minimal d that for every $p \in S$ and every r the following inequality holds: $|B(p, 2r) \cap S| \leq 2^d |B(p, r) \cap S|$
- Measure-based dimensions
- Disorder dimension (see next chapter)

Exercise: prove that

$$\forall S \subset \mathbb{U}: \quad \mathsf{dim}_{\mathsf{Doub}}(S) \leq 4\mathsf{dim}_{\mathsf{KR}}(S)$$

Chapter XII

Disorder Method:

A Combinatorial Solution of Nearest Neighbors

Concept of Disorder

Sort all objects in database S by their similarity to pLet $rank_p(s)$ be position of object s in this list

Concept of Disorder

Sort all objects in database S by their similarity to pLet $rank_p(s)$ be position of object s in this list

Disorder inequality for some constant *D*:

$$\forall p, r, s \in \{q\} \cup S :$$
 $\operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$

Minimal *D* providing disorder inequality is called **disorder constant** of a given set

Concept of Disorder

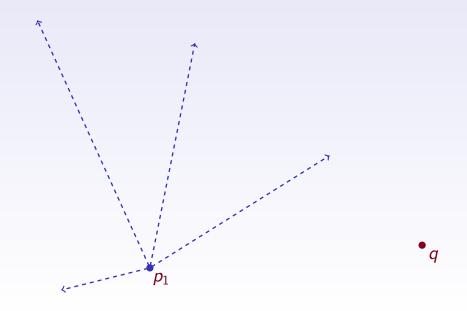
Sort all objects in database S by their similarity to pLet $rank_p(s)$ be position of object s in this list

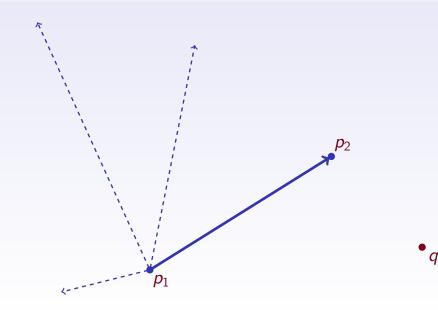
Disorder inequality for some constant *D*:

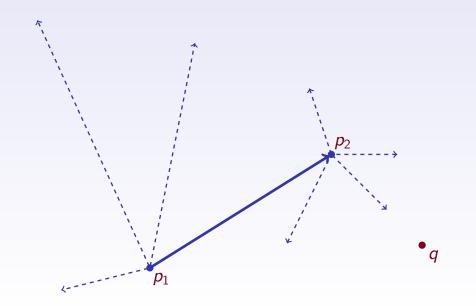
$$\forall p, r, s \in \{q\} \cup S : \quad \operatorname{rank}_r(s) \leq D \cdot (\operatorname{rank}_p(r) + \operatorname{rank}_p(s))$$

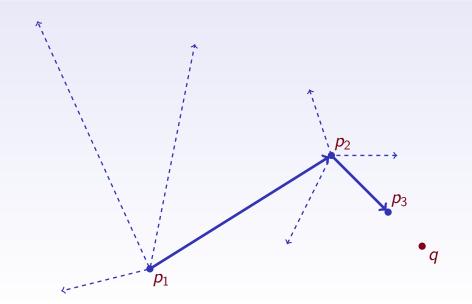
Minimal *D* providing disorder inequality is called **disorder constant** of a given set

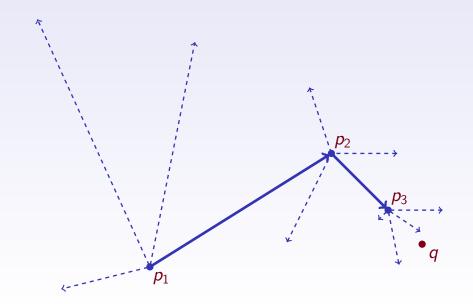
For "regular" sets in d-dimensional Euclidean space $D \approx 2^{d-1}$

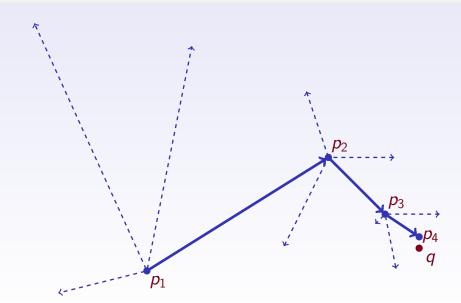












Hierarchical greedy navigation:

• Start at random city p_1

- Start at random city p_1
- 2 Among all airlines choose the one going most closely to q, move there (say, to p_2)

- Start at random city p_1
- ② Among all airlines choose the one going most closely to q, move there (say, to p_2)
- 3 Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)

- Start at random city p_1
- 2 Among all airlines choose the one going most closely to q, move there (say, to p_2)
- 3 Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
- 4 Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)

- Start at random city p_1
- 2 Among all airlines choose the one going most closely to q, move there (say, to p_2)
- 3 Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
- 4 Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
- **Solution** Separate $\log n$ times and return the final city

Hierarchical greedy navigation:

- Start at random city p_1
- 2 Among all airlines choose the one going most closely to q, move there (say, to p_2)
- 3 Among all railway routes from p_2 choose the one going most closely to q, move there (p_3)
- 4 Among all bus routes from p_3 choose the one going most closely to q, move there (p_4)
- **Solution** Repeat this $\log n$ times and return the final city

Transport system: for level k choose c random arcs to $\frac{n}{2^k}$ neighborhood

Ranwalk Algorithm

Preprocessing:

 For every point p in database we sort all other points by their similarity to p

Data structure: n lists of n-1 points each.

Query processing:

- **1** Step 0: choose a random point p_0 in the database.
- From k = 1 to $k = \log n$ do Step k: Choose $D' := 3D(\log \log n + 1)$ random points from $\min(n, \frac{3Dn}{2^k})$ -neighborhood of p_{k-1} . Compute similarities of these points w.r.t. q and set p_k to be the most similar one.
- If $\operatorname{rank}_{p_{\log n}}(q) > D$ go to step 0, otherwise search the whole D^2 -neighborhood of $p_{\log n}$ and return the point most similar to q as the final answer.

Analysis of Ranwalk

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

$$rank_x(y) \leq D(rank_z(x) + rank_z(y)).$$

Then Ranwalk algorithm always answers nearest neighbor queries correctly. It uses the following resources:

Preprocessing space: $\mathcal{O}(n^2)$.

Preprocessing time: $O(n^2 \log n)$.

Expected query time: $\mathcal{O}(D \log n \log \log n + D^2)$.

Arwalk Algorithm

Preprocessing:

• For every point p in database we sort all other points by their similarity to p. For every level number k from 1 to $\log n$ we store pointers to $D' = 3D(\log\log n + \log 1/\delta)$ random points within $\min(n, \frac{3Dn}{2^k})$ most similar to p points.

Query processing:

- **1** Step 0: choose a random point p_0 in the database.
- Prom k = 1 to $k = \log n$ do Step k: go by p_{k-1} pointers of level k. Compute similarities of these D' points to q and set p_k to be the most similar one.
- 3 Return $p_{\log n}$.

Analysis of Algorithm

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point $S \cup \{q\}$ satisfy disorder inequality with constant D:

$$rank_x(y) \leq D(rank_z(x) + rank_z(y)).$$

Then for any probability of error δ Arwalk algorithm answers nearest neighbor query within the following constraints:

Preprocessing space: $\mathcal{O}(nD \log n(\log \log n + \log 1/\delta))$.

Preprocessing time: $O(n^2 \log n)$.

Query time: $\mathcal{O}(D \log n(\log \log n + \log 1/\delta))$.

Chapter XIII

Probabilistic Analysis: Zipf Model

Probabilistic Analysis in a Nutshell

We define a probability distribution over databases

Probabilistic Analysis in a Nutshell

- We define a probability distribution over databases
- We define probability distribution over query objects

Probabilistic Analysis in a Nutshell

- We define a probability distribution over databases
- We define probability distribution over query objects
- We construct a solution that is efficient/accurate with high probability over "random" input/query

Zipf Model

- Terms t_1, \ldots, t_m
- To generate a document we take every t_i with probability $\frac{1}{i}$
- Database is *n* independently chosen documents
- Query document has exactly one term in every interval $[e^i, e^{i+1}]$
- Similarity between documents is defined as the number of common terms

Magic Level Theorem

Magic Level
$$q = \sqrt{2 \log_e n}$$

Theorem (Hoffmann, YL, Nowotka. CSR'07)

- With very high probability there exists a document in database having $\mathbf{q} \varepsilon$ top terms of query document
- **2** With very small probability there exists a document in database having any $q + \varepsilon$ overlap with query document

Chapter XIV

Future of Nearest Neighbors

Directions for Further Research (1/2)

- Relational nearest neighbors: using graph structure of underlying domain. Examples: co-occurrence similarity, recommendations via social network
- Nearest neighbors for sparse vectors in Euclidean space
- Low-distortion embeddings for social networks, similarity visualization
- Construct algorithms for learning similarity function

Directions for Further Research (2/2)

- Probabilistic analysis for specific domains: introduce reasonable input distributions and solve nearest neighbors for them
- Disorder method / Intrinsic dimension: fast algorithm for bounded average dimension
- Branch and bound techniques for bichromatic nearest neighbors
- New dynamic aspects: object descriptions are changing in time

OP1: NN for Sparse Vectors

Database: n vectors in \mathbb{R}^m each having at most $k \ll m$ nonzero coordinates

Query: vector in \mathbb{R}^m also having at most $k \ll m$

nonzero coordinates

Similarity: scalar product

OP1: NN for Sparse Vectors

Database: n vectors in \mathbb{R}^m each having at most $k \ll m$

nonzero coordinates

Query: vector in \mathbb{R}^m also having at most $k \ll m$

nonzero coordinates

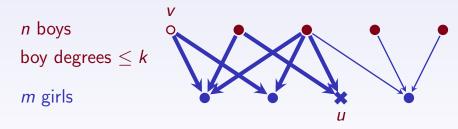
Similarity: scalar product

Construct an algorithm for solving nearest neighbors on sparse vectors

Constraints: poly(n, m) preprocessing, $poly(k, \log n)$ query

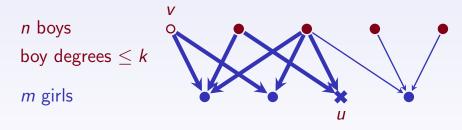
OP2: 3-Step NN

3-step similarity between boy and girl in some bipartite boys-girls graph is equal to number of paths of length 3 between them



OP2: 3-Step NN

3-step similarity between boy and girl in some bipartite boys-girls graph is equal to number of paths of length 3 between them



Construct an algorithm for solving nearest neighbors in bipartite graphs with 3-step similarity

Constraints: poly(n, m) preprocessing, $poly(k, \log n, \log m)$ query

Exercises

Prove that
$$\mathsf{dim}_{\mathsf{Doub}}(\mathbb{R}^d) = \mathcal{O}(d)$$

Exercises

Prove that
$$\dim_{\mathsf{Doub}}(\mathbb{R}^d) = \mathcal{O}(d)$$

Prove that $\forall S \subset \mathbb{U}$: $\dim_{\mathsf{Doub}}(S) \leq 2\dim_{\mathsf{Doub}}(\mathbb{U})$

Exercises

Prove that
$$\mathsf{dim}_{\mathsf{Doub}}(\mathbb{R}^d) = \mathcal{O}(d)$$

Prove that $\forall S \subset \mathbb{U} : \dim_{\mathsf{Doub}}(S) \leq 2\dim_{\mathsf{Doub}}(\mathbb{U})$

Prove that $\forall S \subset \mathbb{U}$: $\dim_{\mathsf{Doub}}(S) \leq 4\dim_{\mathsf{KR}}(S)$

• Doubling dimension: restriction on size of *r*-covers. Solution: ring-separator tree

- Doubling dimension: restriction on size of *r*-covers.
 Solution: ring-separator tree
- Disorder inequality: replacement of triangle inequality using rank values instead of actual similarity values

- Doubling dimension: restriction on size of *r*-covers.
 Solution: ring-separator tree
- Disorder inequality: replacement of triangle inequality using rank values instead of actual similarity values
- Probabilistic analysis: Efficient algorithm for texts generated by Zipf model

- Doubling dimension: restriction on size of *r*-covers.
 Solution: ring-separator tree
- Disorder inequality: replacement of triangle inequality using rank values instead of actual similarity values
- Probabilistic analysis: Efficient algorithm for texts generated by Zipf model

Thanks for your attention! Questions?

References (1/2)

Course homepage

http://simsearch.yury.name/tutorial.html

Y. Lifshits

The Homepage of Nearest Neighbors and Similarity Search http://simsearch.yury.name

N. Goyal, Y. Lifshits, H. Schütze

Disorder Inequality: A Combinatorial Approach to Nearest Neighbors Submitted http://yury.name/papers/goyal2008disorder.pdf

B. Hoffmann, Y. Lifshits, D. Nowotka

Maximal Intersection Queries in Randomized Graph Models CSR'07 http://yury.name/papers/hoffmann2007maximal.pdf

References (2/2)

R. Krauthgamer and J.R. Lee

The black-box complexity of nearest-neighbor search Theoretical Computer Science, 2005 http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf

R. Krauthgamer and J.R. Lee

Navigating nets: simple algorithms for proximity search SODA'04 http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA'04.pdf

K.L. Clarkson

Nearest-Neighbor Searching and Metric Space Dimensions
In Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, 2006
http://www.cs.bell-labs.com/who/clarkson/nn_survey/p.pdf