
Restrictions on Input
Algorithms for Nearest Neighbor Search: Lecture 4

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg
California Institute of Technology

1 / 35

http://yury.name

Making Nearest Neighbors Easier
Tractable solution: poly(n) preprocessing, poly log(n) search time

General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

Define intrinsic dimension of search domain and
assume it is small (usually constant or O(log log n))

Fix some probability distribution over inputs and
queries. Find an algorithm which is fast with high
probability over inputs/query

2 / 35

Making Nearest Neighbors Easier
Tractable solution: poly(n) preprocessing, poly log(n) search time

General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

Define intrinsic dimension of search domain and
assume it is small (usually constant or O(log log n))

Fix some probability distribution over inputs and
queries. Find an algorithm which is fast with high
probability over inputs/query

2 / 35

Making Nearest Neighbors Easier
Tractable solution: poly(n) preprocessing, poly log(n) search time

General case of nearest neighbors seems to be intractable

Any assumption that makes the problem easier?

Two approaches:

Define intrinsic dimension of search domain and
assume it is small (usually constant or O(log log n))

Fix some probability distribution over inputs and
queries. Find an algorithm which is fast with high
probability over inputs/query

2 / 35

Outline

1 Nearest Neighbors in Small Doubling Dimension

2 Disorder Method: A Combinatorial Solution of
Nearest Neighbors

3 Probabilistic Analysis: Zipf Model

4 Open Problems

3 / 35

Outline

1 Nearest Neighbors in Small Doubling Dimension

2 Disorder Method: A Combinatorial Solution of
Nearest Neighbors

3 Probabilistic Analysis: Zipf Model

4 Open Problems

3 / 35

Outline

1 Nearest Neighbors in Small Doubling Dimension

2 Disorder Method: A Combinatorial Solution of
Nearest Neighbors

3 Probabilistic Analysis: Zipf Model

4 Open Problems

3 / 35

Outline

1 Nearest Neighbors in Small Doubling Dimension

2 Disorder Method: A Combinatorial Solution of
Nearest Neighbors

3 Probabilistic Analysis: Zipf Model

4 Open Problems

3 / 35

Chapter XI

Nearest Neighbors in Small
Doubling Dimension

Mini-plan:
Notion of doubling dimension
Solving 3-approximate nearest neighbors
From 3-approximation to (1 + ε)-approximation

4 / 35

Notion of Doubling Dimension

Doubling constant λ for search
domain U: minimal value such
that for every r and every object
p ∈ U the ball B(p, 2r) has cover
of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant
dim(U) = log λ

Exercise: Prove that for Euclidean space dim(Rd) = O(d)

Exercise: Prove that ∀S ⊂ U : dim(S) ≤ 2dim(U)

5 / 35

Notion of Doubling Dimension

Doubling constant λ for search
domain U: minimal value such
that for every r and every object
p ∈ U the ball B(p, 2r) has cover
of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant
dim(U) = log λ

Exercise: Prove that for Euclidean space dim(Rd) = O(d)

Exercise: Prove that ∀S ⊂ U : dim(S) ≤ 2dim(U)

5 / 35

Notion of Doubling Dimension

Doubling constant λ for search
domain U: minimal value such
that for every r and every object
p ∈ U the ball B(p, 2r) has cover
of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant
dim(U) = log λ

Exercise: Prove that for Euclidean space dim(Rd) = O(d)

Exercise: Prove that ∀S ⊂ U : dim(S) ≤ 2dim(U)

5 / 35

Notion of Doubling Dimension

Doubling constant λ for search
domain U: minimal value such
that for every r and every object
p ∈ U the ball B(p, 2r) has cover
of at most λ balls of radius r

Doubling dimension: logarithm of doubling constant
dim(U) = log λ

Exercise: Prove that for Euclidean space dim(Rd) = O(d)

Exercise: Prove that ∀S ⊂ U : dim(S) ≤ 2dim(U)

5 / 35

Doubling Dimension and r -Nets

Set T ⊂ U is an r-net for S ⊂ U iff
(1) ∀p, p′ ∈ T : d(p, p′) > r
(2) ∀s ∈ S ∃p ∈ T : d(s, p) < r

Lemma (Cover Lemma)

Every ball B(p, r) has δr -net of cardinality at

most (1
δ)
O(dim(U))

6 / 35

Doubling Dimension and r -Nets

Set T ⊂ U is an r-net for S ⊂ U iff
(1) ∀p, p′ ∈ T : d(p, p′) > r
(2) ∀s ∈ S ∃p ∈ T : d(s, p) < r

Lemma (Cover Lemma)

Every ball B(p, r) has δr -net of cardinality at

most (1
δ)
O(dim(U))

6 / 35

Cover Lemma: Proof
Greedy algorithm:

1 Start from empty T

2 Find some object in S which is still δr -far from all objects in
T , add it to T

3 Stop when all objects in S are within δr from some point in T

Upper bound on size:

Apply definition of doubling constant to B(p, r) recursively
until getting δr

3
-cover

This cover has size (1
δ
)O(dim(U))

Every element of this cover can contain at most one object
from T

7 / 35

Cover Lemma: Proof
Greedy algorithm:

1 Start from empty T

2 Find some object in S which is still δr -far from all objects in
T , add it to T

3 Stop when all objects in S are within δr from some point in T

Upper bound on size:

Apply definition of doubling constant to B(p, r) recursively
until getting δr

3
-cover

This cover has size (1
δ
)O(dim(U))

Every element of this cover can contain at most one object
from T

7 / 35

Ring-Separator Lemma

Triple (p, r , 2r) is
δ-ring-separator
for S iff

1 |S ∩ B(p, r)| ≥ δ|S |

2 |S/B(p, 2r)| ≥ δ|S |

≥ δ|S |

≤ (1− 2δ)|S |

≥ δ|S |

Lemma (Ring-Separator Lemma)

For every S there is ring-separator with δ ≥ (1
2)
O(dim(S))

8 / 35

Ring-Separator Lemma

Triple (p, r , 2r) is
δ-ring-separator
for S iff

1 |S ∩ B(p, r)| ≥ δ|S |

2 |S/B(p, 2r)| ≥ δ|S |

≥ δ|S |

≤ (1− 2δ)|S |

≥ δ|S |

Lemma (Ring-Separator Lemma)

For every S there is ring-separator with δ ≥ (1
2)
O(dim(S))

8 / 35

Ring-Separator Lemma: Proof

Fix δ = (1
2
)cdim(S) for some large c

For every p choose the maximal rp such that |B(p, rp)| < δ|S |

Let p0 be the one having minimal rp0

If none of triples (p, rp, 2rp) is δ ring-separator build an rp0-net
for B(p0, 2rp0):

Start from r0, and set A := B(p0, 2rp0)/B(p0, rp0)

Iteratively add some point p from A to net, update
A := A/B(p, r)

Since A decreased by at most 2δ|S | points each time there
must be many points in cover. Since it is rp0-net for
B(p0, 2rp0) there must be few points. Contradiction

9 / 35

Ring-Separator Tree

Krauthgamer&Lee’05
Preprocessing:

1 Find (1
2
)O(dim(S)) ring-separator (p, r , 2r)

for S

2 Put objects from B(p, 2r) to inner branch

3 Put objects from S/B(p, r) to outer branch

4 Recursively repeat

p

Search:
1 For every node (p, r , 2r): if d(q, p) ≤ 3r/2 go only to inner

branch otherwise go only to outer branch

2 Return the best object considered in search

10 / 35

Ring-Separator Tree

Krauthgamer&Lee’05
Preprocessing:

1 Find (1
2
)O(dim(S)) ring-separator (p, r , 2r)

for S

2 Put objects from B(p, 2r) to inner branch

3 Put objects from S/B(p, r) to outer branch

4 Recursively repeat

p

Search:
1 For every node (p, r , 2r): if d(q, p) ≤ 3r/2 go only to inner

branch otherwise go only to outer branch

2 Return the best object considered in search

10 / 35

3-NN via Ring-Separator Tree

Notation: p1, . . . , pk are the centers of visited rings

If pNN(q) = pk we are done

If not, let us consider pi where we miss the right
branch. There are two cases:

pi

pNN

q pi
pNNq

Anyway, pi at most 3 time worse than pNN(q)
11 / 35

From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN

12 / 35

From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN

12 / 35

From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN

12 / 35

From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN

12 / 35

From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN

12 / 35

From 3-NN to r -NN: Reduction Algorithm

1 Find 3-approximate nearest neighbor p for q

2 Quickly build a εd(p,q)
3 cover for B(p, 4d(p,q)

3). See
the next slide

3 Return an object in cover that is the closest to q

p

q

p
q

pNN

p′

p′′

rNN

≤ 3rNN

≤ εrNN

≤ (1 + ε)rNN

12 / 35

From 3-NN to r -NN: Net Construction
Preprocessing:

1 For every i build 2i -net for S (every lower level contains all
points from the higher level)

2 Compute children pointers: from every element p of 2i -net to
all balls of 2i−1-net required to cover B(p, 2i)

3 Compute brother pointers: from every element p of 2i -net to
all elements p′ from 2i -net needed for covering B(p, 2i)

4 Compute parent pointers: from every element p of 2i−1-net to
the element p′ from 2i -net within 2i from it

On-line net construction:
1 Go up by parent pointers until meeting ball big enough

2 Use brother pointer

3 Go by children pointers until getting cover small enough

13 / 35

From 3-NN to r -NN: Net Construction
Preprocessing:

1 For every i build 2i -net for S (every lower level contains all
points from the higher level)

2 Compute children pointers: from every element p of 2i -net to
all balls of 2i−1-net required to cover B(p, 2i)

3 Compute brother pointers: from every element p of 2i -net to
all elements p′ from 2i -net needed for covering B(p, 2i)

4 Compute parent pointers: from every element p of 2i−1-net to
the element p′ from 2i -net within 2i from it

On-line net construction:
1 Go up by parent pointers until meeting ball big enough

2 Use brother pointer

3 Go by children pointers until getting cover small enough
13 / 35

Other Definitions of Intrinsic Dimension

Box dimension is the minimal d that for every r our
domain U has r -net of size at most (1/r)d+o(1)

Karger-Ruhl dimension of database S ⊂ U is the
minimal d that for every p ∈ S and every r the
following inequality holds:
|B(p, 2r) ∩ S | ≤ 2d |B(p, r) ∩ S |

Measure-based dimensions

Disorder dimension (see next chapter)

Exercise: prove that
∀S ⊂ U : dimDoub(S) ≤ 4dimKR(S)

14 / 35

Other Definitions of Intrinsic Dimension

Box dimension is the minimal d that for every r our
domain U has r -net of size at most (1/r)d+o(1)

Karger-Ruhl dimension of database S ⊂ U is the
minimal d that for every p ∈ S and every r the
following inequality holds:
|B(p, 2r) ∩ S | ≤ 2d |B(p, r) ∩ S |

Measure-based dimensions

Disorder dimension (see next chapter)

Exercise: prove that
∀S ⊂ U : dimDoub(S) ≤ 4dimKR(S)

14 / 35

Chapter XII

Disorder Method:

A Combinatorial Solution of
Nearest Neighbors

15 / 35

Concept of Disorder

Sort all objects in database S by their similarity to p
Let rankp(s) be position of object s in this list

Disorder inequality for some constant D:

∀p, r , s ∈ {q}∪S : rankr(s) ≤ D·(rankp(r)+rankp(s))

Minimal D providing disorder inequality is called
disorder constant of a given set

For “regular” sets in d -dimensional Euclidean space D ≈ 2d−1

16 / 35

Concept of Disorder

Sort all objects in database S by their similarity to p
Let rankp(s) be position of object s in this list

Disorder inequality for some constant D:

∀p, r , s ∈ {q}∪S : rankr(s) ≤ D·(rankp(r)+rankp(s))

Minimal D providing disorder inequality is called
disorder constant of a given set

For “regular” sets in d -dimensional Euclidean space D ≈ 2d−1

16 / 35

Concept of Disorder

Sort all objects in database S by their similarity to p
Let rankp(s) be position of object s in this list

Disorder inequality for some constant D:

∀p, r , s ∈ {q}∪S : rankr(s) ≤ D·(rankp(r)+rankp(s))

Minimal D providing disorder inequality is called
disorder constant of a given set

For “regular” sets in d -dimensional Euclidean space D ≈ 2d−1

16 / 35

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

17 / 35

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

17 / 35

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

17 / 35

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

17 / 35

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

17 / 35

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

17 / 35

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

18 / 35

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

18 / 35

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

18 / 35

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

18 / 35

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

18 / 35

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

18 / 35

Ranwalk Algorithm
Preprocessing:

For every point p in database we sort all other points by their
similarity to p

Data structure: n lists of n − 1 points each.

Query processing:
1 Step 0: choose a random point p0 in the database.

2 From k = 1 to k = log n do Step k : Choose
D ′ := 3D(log log n + 1) random points from
min(n, 3Dn

2k)-neighborhood of pk−1. Compute similarities of
these points w.r.t. q and set pk to be the most similar one.

3 If rankplog n
(q) > D go to step 0, otherwise search the whole

D2-neighborhood of plog n and return the point most similar to
q as the final answer.

19 / 35

Analysis of Ranwalk

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point
S ∪ {q} satisfy disorder inequality with constant D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then Ranwalk algorithm always answers nearest neighbor
queries correctly. It uses the following resources:
Preprocessing space: O(n2).
Preprocessing time: O(n2 log n).
Expected query time: O(D log n log log n + D2).

20 / 35

Arwalk Algorithm

Preprocessing:

For every point p in database we sort all other points by their
similarity to p. For every level number k from 1 to log n we
store pointers to D ′ = 3D(log log n + log 1/δ) random points
within min(n, 3Dn

2k) most similar to p points.

Query processing:

1 Step 0: choose a random point p0 in the database.

2 From k = 1 to k = log n do Step k : go by pk−1 pointers of
level k . Compute similarities of these D ′ points to q and set
pk to be the most similar one.

3 Return plog n.

21 / 35

Analysis of Algorithm

Theorem (Goyal, YL, Schütze. 2007)

Assume that database points together with query point
S ∪ {q} satisfy disorder inequality with constant D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then for any probability of error δ Arwalk algorithm
answers nearest neighbor query within the following
constraints:
Preprocessing space: O(nD log n(log log n + log 1/δ)).
Preprocessing time: O(n2 log n).
Query time: O(D log n(log log n + log 1/δ)).

22 / 35

Chapter XIII

Probabilistic Analysis: Zipf Model

23 / 35

Probabilistic Analysis in a Nutshell

We define a probability distribution over databases

We define probability distribution over query objects

We construct a solution that is efficient/accurate
with high probability over “random” input/query

24 / 35

Probabilistic Analysis in a Nutshell

We define a probability distribution over databases

We define probability distribution over query objects

We construct a solution that is efficient/accurate
with high probability over “random” input/query

24 / 35

Probabilistic Analysis in a Nutshell

We define a probability distribution over databases

We define probability distribution over query objects

We construct a solution that is efficient/accurate
with high probability over “random” input/query

24 / 35

Zipf Model

Terms t1, . . . , tm

To generate a document we take every ti with
probability 1

i

Database is n independently chosen documents

Query document has exactly one term in every
interval [e i , e i+1]

Similarity between documents is defined as the
number of common terms

25 / 35

Magic Level Theorem

Magic Level q =
√

2 loge n

Theorem (Hoffmann, YL, Nowotka. CSR’07)

1 With very high probability there exists a document
in database having q − ε top terms of query
document

2 With very small probability there exists a document
in database having any q + ε overlap with query
document

26 / 35

Chapter XIV

Future of Nearest Neighbors

27 / 35

Directions for Further Research (1/2)

Relational nearest neighbors: using graph structure
of underlying domain. Examples: co-occurrence
similarity, recommendations via social network

Nearest neighbors for sparse vectors in Euclidean
space

Low-distortion embeddings for social networks,
similarity visualization

Construct algorithms for learning similarity function

28 / 35

Directions for Further Research (2/2)

Probabilistic analysis for specific domains: introduce
reasonable input distributions and solve nearest
neighbors for them

Disorder method / Intrinsic dimension: fast
algorithm for bounded average dimension

Branch and bound techniques for bichromatic
nearest neighbors

New dynamic aspects: object descriptions are
changing in time

29 / 35

OP1: NN for Sparse Vectors

Database: n vectors in Rm each having at most k � m
nonzero coordinates

Query: vector in Rm also having at most k � m
nonzero coordinates

Similarity: scalar product

Construct an algorithm for solving
nearest neighbors on sparse vectors

Constraints: poly(n, m) preprocessing, poly(k , log n) query

30 / 35

OP1: NN for Sparse Vectors

Database: n vectors in Rm each having at most k � m
nonzero coordinates

Query: vector in Rm also having at most k � m
nonzero coordinates

Similarity: scalar product

Construct an algorithm for solving
nearest neighbors on sparse vectors

Constraints: poly(n, m) preprocessing, poly(k , log n) query

30 / 35

OP2: 3-Step NN

3-step similarity between boy and girl in some bipartite
boys-girls graph is equal to number of paths of length 3
between them

n boys

boy degrees ≤ k

m girls

v

u
6

Construct an algorithm for solving nearest neighbors in
bipartite graphs with 3-step similarity

Constraints: poly(n, m) preprocessing, poly(k , log n, log m) query

31 / 35

OP2: 3-Step NN

3-step similarity between boy and girl in some bipartite
boys-girls graph is equal to number of paths of length 3
between them

n boys

boy degrees ≤ k

m girls

v

u
6

Construct an algorithm for solving nearest neighbors in
bipartite graphs with 3-step similarity

Constraints: poly(n, m) preprocessing, poly(k , log n, log m) query

31 / 35

Exercises

Prove that dimDoub(Rd) = O(d)

Prove that ∀S ⊂ U : dimDoub(S) ≤ 2dimDoub(U)

Prove that ∀S ⊂ U : dimDoub(S) ≤ 4dimKR(S)

32 / 35

Exercises

Prove that dimDoub(Rd) = O(d)

Prove that ∀S ⊂ U : dimDoub(S) ≤ 2dimDoub(U)

Prove that ∀S ⊂ U : dimDoub(S) ≤ 4dimKR(S)

32 / 35

Exercises

Prove that dimDoub(Rd) = O(d)

Prove that ∀S ⊂ U : dimDoub(S) ≤ 2dimDoub(U)

Prove that ∀S ⊂ U : dimDoub(S) ≤ 4dimKR(S)

32 / 35

Highlights

Doubling dimension: restriction on size of r -covers.
Solution: ring-separator tree

Disorder inequality: replacement of triangle
inequality using rank values instead of actual
similarity values

Probabilistic analysis: Efficient algorithm for texts
generated by Zipf model

Thanks for your attention! Questions?

33 / 35

Highlights

Doubling dimension: restriction on size of r -covers.
Solution: ring-separator tree

Disorder inequality: replacement of triangle
inequality using rank values instead of actual
similarity values

Probabilistic analysis: Efficient algorithm for texts
generated by Zipf model

Thanks for your attention! Questions?

33 / 35

Highlights

Doubling dimension: restriction on size of r -covers.
Solution: ring-separator tree

Disorder inequality: replacement of triangle
inequality using rank values instead of actual
similarity values

Probabilistic analysis: Efficient algorithm for texts
generated by Zipf model

Thanks for your attention! Questions?

33 / 35

Highlights

Doubling dimension: restriction on size of r -covers.
Solution: ring-separator tree

Disorder inequality: replacement of triangle
inequality using rank values instead of actual
similarity values

Probabilistic analysis: Efficient algorithm for texts
generated by Zipf model

Thanks for your attention! Questions?
33 / 35

References (1/2)

Course homepage http://simsearch.yury.name/tutorial.html

Y. Lifshits
The Homepage of Nearest Neighbors and Similarity Search
http://simsearch.yury.name

N. Goyal, Y. Lifshits, H. Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbors Submitted

http://yury.name/papers/goyal2008disorder.pdf

B. Hoffmann, Y. Lifshits, D. Nowotka
Maximal Intersection Queries in Randomized Graph Models CSR’07

http://yury.name/papers/hoffmann2007maximal.pdf

34 / 35

http://simsearch.yury.name/tutorial.html
http://simsearch.yury.name
http://yury.name/papers/goyal2008disorder.pdf
http://yury.name/papers/hoffmann2007maximal.pdf

References (2/2)

R. Krauthgamer and J.R. Lee
The black-box complexity of nearest-neighbor search Theoretical Computer Science, 2005

http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf

R. Krauthgamer and J.R. Lee
Navigating nets: simple algorithms for proximity search SODA’04

http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA04.pdf

K.L. Clarkson
Nearest-Neighbor Searching and Metric Space Dimensions
In Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, MIT Press, 2006

http://www.cs.bell-labs.com/who/clarkson/nn survey/p.pdf

35 / 35

http://www.cs.berkeley.edu/~jrl/papers/nnc.pdf
http://www.cs.berkeley.edu/~robi/papers/KL-NavNets-SODA04.pdf
http://www.cs.bell-labs.com/who/clarkson/nn_survey/p.pdf

	Nearest Neighbors in Small Doubling Dimension
	Disorder Method: A Combinatorial Solution of Nearest Neighbors
	Probabilistic Analysis: Zipf Model
	Open Problems

